本文整理匯總了Python中mpl_toolkits.mplot3d.Axes3D方法的典型用法代碼示例。如果您正苦於以下問題:Python mplot3d.Axes3D方法的具體用法?Python mplot3d.Axes3D怎麽用?Python mplot3d.Axes3D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mpl_toolkits.mplot3d
的用法示例。
在下文中一共展示了mplot3d.Axes3D方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: color_3D_projection
# 需要導入模塊: from mpl_toolkits import mplot3d [as 別名]
# 或者: from mpl_toolkits.mplot3d import Axes3D [as 別名]
def color_3D_projection(
data_projection,
variable_data,
title,
color_map='jet'):
'''
Plot a 3d scatter plot, each point being neural activity at a certain
time bin, colored by the corresponding behavioral variable
'''
x, y, z = np.split(data_projection, 3, axis=1)
fig = plt.figure(title[:3])
ax = Axes3D(fig)
p = ax.scatter(x, y, z, s=20, alpha=0.25, c=variable_data, cmap=color_map)
fig.colorbar(p)
ax.set_title(title, fontsize=18)
plt.show()
return ax
示例2: tryPlot
# 需要導入模塊: from mpl_toolkits import mplot3d [as 別名]
# 或者: from mpl_toolkits.mplot3d import Axes3D [as 別名]
def tryPlot():
cmap = plt.get_cmap('jet_r')
fig = plt.figure()
ax = Axes3D(fig)
draw(ax, [-0.0152730000000000,-0.113074400000000,0.00867852000000000,0.766616000000000,0.483920000000000,0.0964542000000000,
8.65505000000000e-06,-0.000113369000000000,0.999997000000000,0.989706000000000,0.143116000000000,7.65900000000000e-06], cmap(float(1)/7))
draw(ax, [-0.310188000000000,0.188456800000000,0.00978854000000000,0.596362000000000,0.577190000000000,0.141414800000000,
-0.331254000000000,0.943525000000000,0.00456327000000000,-0.00484978000000000,-0.00653891000000000,0.999967000000000], cmap(float(2)/7))
draw(ax, [-0.290236000000000,-0.334664000000000,-0.328648000000000,0.322898000000000,0.0585966000000000,0.0347996000000000,
-0.330345000000000,-0.942455000000000,0.0514932000000000,0.0432524000000000,0.0393726000000000,0.998095000000000], cmap(float(3)/7))
draw(ax, [-0.289462000000000,-0.334842000000000,0.361558000000000,0.322992000000000,0.0593536000000000,0.0350418000000000,
0.309240000000000,0.949730000000000,0.0485183000000000,-0.0511885000000000,-0.0343219000000000,0.998099000000000], cmap(float(4)/7))
draw(ax, [0.281430000000000,-0.306584000000000,0.382928000000000,0.392156000000000,0.0409424000000000,0.0348472000000000,
0.322342000000000,-0.942987000000000,0.0828920000000000,-0.0248683000000000,0.0791002000000000,0.996556000000000], cmap(float(5)/7))
draw(ax, [0.281024000000000,-0.306678000000000,-0.366110000000000,0.392456000000000,0.0409366000000000,0.0348446000000000,
-0.322608000000000,0.942964000000000,0.0821142000000000,0.0256742000000000,-0.0780031000000000,0.996622000000000], cmap(float(6)/7))
draw(ax, [0.121108800000000,-0.0146729400000000,0.00279166000000000,0.681576000000000,0.601756000000000,0.0959706000000000,
-0.986967000000000,-0.160173000000000,0.0155341000000000,0.0146809000000000,0.00650174000000000,0.999801000000000], cmap(float(7)/7))
plt.show()
示例3: showGenshapes
# 需要導入模塊: from mpl_toolkits import mplot3d [as 別名]
# 或者: from mpl_toolkits.mplot3d import Axes3D [as 別名]
def showGenshapes(genshapes):
for i in range(len(genshapes)):
recover_boxes = genshapes[i]
fig = plt.figure(i)
cmap = plt.get_cmap('jet_r')
ax = Axes3D(fig)
ax.set_xlim(-0.7, 0.7)
ax.set_ylim(-0.7, 0.7)
ax.set_zlim(-0.7, 0.7)
for jj in range(len(recover_boxes)):
p = recover_boxes[jj][:]
draw(ax, p, cmap(float(jj)/len(recover_boxes)))
plt.show()
示例4: tryPlot
# 需要導入模塊: from mpl_toolkits import mplot3d [as 別名]
# 或者: from mpl_toolkits.mplot3d import Axes3D [as 別名]
def tryPlot():
cmap = plt.get_cmap(u'jet_r')
fig = plt.figure()
ax = Axes3D(fig)
draw(ax, [-0.0152730000000000,-0.113074400000000,0.00867852000000000,0.766616000000000,0.483920000000000,0.0964542000000000,
8.65505000000000e-06,-0.000113369000000000,0.999997000000000,0.989706000000000,0.143116000000000,7.65900000000000e-06], cmap(float(1)/7))
draw(ax, [-0.310188000000000,0.188456800000000,0.00978854000000000,0.596362000000000,0.577190000000000,0.141414800000000,
-0.331254000000000,0.943525000000000,0.00456327000000000,-0.00484978000000000,-0.00653891000000000,0.999967000000000], cmap(float(2)/7))
draw(ax, [-0.290236000000000,-0.334664000000000,-0.328648000000000,0.322898000000000,0.0585966000000000,0.0347996000000000,
-0.330345000000000,-0.942455000000000,0.0514932000000000,0.0432524000000000,0.0393726000000000,0.998095000000000], cmap(float(3)/7))
draw(ax, [-0.289462000000000,-0.334842000000000,0.361558000000000,0.322992000000000,0.0593536000000000,0.0350418000000000,
0.309240000000000,0.949730000000000,0.0485183000000000,-0.0511885000000000,-0.0343219000000000,0.998099000000000], cmap(float(4)/7))
draw(ax, [0.281430000000000,-0.306584000000000,0.382928000000000,0.392156000000000,0.0409424000000000,0.0348472000000000,
0.322342000000000,-0.942987000000000,0.0828920000000000,-0.0248683000000000,0.0791002000000000,0.996556000000000], cmap(float(5)/7))
draw(ax, [0.281024000000000,-0.306678000000000,-0.366110000000000,0.392456000000000,0.0409366000000000,0.0348446000000000,
-0.322608000000000,0.942964000000000,0.0821142000000000,0.0256742000000000,-0.0780031000000000,0.996622000000000], cmap(float(6)/7))
draw(ax, [0.121108800000000,-0.0146729400000000,0.00279166000000000,0.681576000000000,0.601756000000000,0.0959706000000000,
-0.986967000000000,-0.160173000000000,0.0155341000000000,0.0146809000000000,0.00650174000000000,0.999801000000000], cmap(float(7)/7))
plt.show()
示例5: showGenshapes
# 需要導入模塊: from mpl_toolkits import mplot3d [as 別名]
# 或者: from mpl_toolkits.mplot3d import Axes3D [as 別名]
def showGenshapes(genshapes):
for i in xrange(len(genshapes)):
recover_boxes = genshapes[i]
fig = plt.figure(i)
cmap = plt.get_cmap(u'jet_r')
ax = Axes3D(fig)
ax.set_xlim(-0.7, 0.7)
ax.set_ylim(-0.7, 0.7)
ax.set_zlim(-0.7, 0.7)
for jj in xrange(len(recover_boxes)):
p = recover_boxes[jj][:]
draw(ax, p, cmap(float(jj)/len(recover_boxes)))
plt.show()
示例6: plot3d
# 需要導入模塊: from mpl_toolkits import mplot3d [as 別名]
# 或者: from mpl_toolkits.mplot3d import Axes3D [as 別名]
def plot3d(self, scale=0.32):
r"""Plot 3d scatter plot of benchmark function.
Args:
scale (float): Scale factor for points.
"""
fig = plt.figure()
ax = Axes3D(fig)
func = self.function()
Xr, Yr = arange(self.Lower, self.Upper, scale), arange(self.Lower, self.Upper, scale)
X, Y = meshgrid(Xr, Yr)
Z = vectorize(self.__2dfun)(X, Y, func)
ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3)
ax.contourf(X, Y, Z, zdir='z', offset=-10, cmap=cm.coolwarm)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
plt.show()
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3
示例7: create_layout
# 需要導入模塊: from mpl_toolkits import mplot3d [as 別名]
# 或者: from mpl_toolkits.mplot3d import Axes3D [as 別名]
def create_layout(self, dimension: int) -> None:
self.fig.canvas.set_window_title(self.plot_title)
self.fig.suptitle(self.plot_title, fontsize=16)
if dimension == 2:
# Stylize axis
self.ax.spines['top'].set_visible(False)
self.ax.spines['right'].set_visible(False)
self.ax.get_xaxis().tick_bottom()
self.ax.get_yaxis().tick_left()
elif dimension == 3:
self.ax = Axes3D(self.fig)
self.ax.autoscale(enable=True, axis='both')
else:
raise Exception('Dimension must be either 2 or 3')
self.ax.set_autoscale_on(True)
self.ax.autoscale_view(True, True, True)
# Style options
self.ax.grid(color='#f0f0f5', linestyle='-', linewidth=0.5, alpha=0.5)
示例8: plot3D_data
# 需要導入模塊: from mpl_toolkits import mplot3d [as 別名]
# 或者: from mpl_toolkits.mplot3d import Axes3D [as 別名]
def plot3D_data(data, x, y):
X,Y = meshgrid(x,y)
fig = plt.figure()
ax = Axes3D(fig)
#ax = fig.add_subplot(111, projection = "3d")
ax.plot_surface(X, Y, data, rstride=1, cstride=1, cmap=cm.jet)
#def conditions_emitt_spread(screen):
# if screen.ne ==1 and (screen.nx and screen.ny):
# effect = 1
# elif screen.ne ==1 and (screen.nx==1 and screen.ny):
# effect = 2
# elif screen.ne ==1 and (screen.nx and screen.ny == 1):
# effect = 3
# elif screen.ne >1 and (screen.nx == 1 and screen.ny == 1):
# effect = 4
# else:
# effect = 0
# return effect
示例9: compute_pca_plot_embedding
# 需要導入模塊: from mpl_toolkits import mplot3d [as 別名]
# 或者: from mpl_toolkits.mplot3d import Axes3D [as 別名]
def compute_pca_plot_embedding(eval_dir, z_train, z_test=None, save=True):
sklearn_pca = PCA(n_components=3)
full_z_pca = sklearn_pca.fit_transform(z_train)
if z_test is not None:
full_z_pca_test = sklearn_pca.transform(z_test)
fig = plt.figure()
ax = Axes3D(fig)
c=np.linspace(0, 1, len(full_z_pca))
ax.scatter(full_z_pca[:,0],full_z_pca[:,1],full_z_pca[:,2], c=c, marker='.', label='PCs of train viewsphere')
if z_test is not None:
ax.scatter(full_z_pca_test[:,0],full_z_pca_test[:,1],full_z_pca_test[:,2], c='red', marker='.', label='test_z')
plt.title('Embedding Principal Components')
ax.set_xlabel('pc1')
ax.set_ylabel('pc2')
ax.set_zlabel('pc3')
plt.legend()
pl.dump(fig,file(os.path.join(eval_dir,'figures','pca_embedding.pickle'),'wb'))
if save:
plt.savefig(os.path.join(eval_dir,'figures','pca_embedding.pdf'))
示例10: scatter
# 需要導入模塊: from mpl_toolkits import mplot3d [as 別名]
# 或者: from mpl_toolkits.mplot3d import Axes3D [as 別名]
def scatter(self, ax, prop=None):
"""
Plot scatter of data points on given axis
Parameters
----------
ax : AxesSubplot or Axes3DSubplot
axis on which the scatter plot is drawn
prop : str
property to display with colormap
"""
sc = None
prop = self.property_name[0] if prop is None else prop
if not self._2d and isinstance(ax, Axes3D):
sc = ax.scatter(
self.vr['x'], self.vr['y'], self.vr['z'],
c=prop)
else:
sc = ax.scatter(
self.vr['x'], self.vr['y'], c=prop)
return sc
示例11: fig_ax3d
# 需要導入模塊: from mpl_toolkits import mplot3d [as 別名]
# 或者: from mpl_toolkits.mplot3d import Axes3D [as 別名]
def fig_ax3d(clean=False, **kwds):
"""``fig,ax3d = fig_ax()``
Parameters
----------
clean : bool
see :func:`clean_ax3d`
"""
fig = plt.figure(**kwds)
try:
ax = fig.add_subplot(111, projection='3d')
except:
# mpl < 1.0.0
ax = Axes3D(fig)
if clean:
clean_ax3d(ax)
return fig, ax
示例12: plot_pc_old
# 需要導入模塊: from mpl_toolkits import mplot3d [as 別名]
# 或者: from mpl_toolkits.mplot3d import Axes3D [as 別名]
def plot_pc_old(pc_np, z_cutoff=70, birds_view=False, color='height', size=0.3, ax=None):
# remove large z points
valid_index = pc_np[:, 2] < z_cutoff
pc_np = pc_np[valid_index, :]
if ax is None:
fig = plt.figure(figsize=(9, 9))
ax = Axes3D(fig)
if color == 'height':
c = pc_np[:, 1]
ax.scatter(pc_np[:, 0].tolist(), pc_np[:, 1].tolist(), pc_np[:, 2].tolist(), s=size, c=c, cmap=cm.jet_r)
elif color == 'reflectance':
assert False
else:
ax.scatter(pc_np[:, 0].tolist(), pc_np[:, 1].tolist(), pc_np[:, 2].tolist(), s=size, c=color)
axisEqual3D(ax)
if True == birds_view:
ax.view_init(elev=0, azim=-90)
else:
ax.view_init(elev=-45, azim=-90)
# ax.invert_yaxis()
return ax
示例13: test_visualization
# 需要導入模塊: from mpl_toolkits import mplot3d [as 別名]
# 或者: from mpl_toolkits.mplot3d import Axes3D [as 別名]
def test_visualization():
ax = Axes3D(figure())
# Without axis.
ut.state_histogram(grove.tomography.operator_utils.GS, title="test")
# With axis.
ut.state_histogram(grove.tomography.operator_utils.GS, ax, "test")
assert ax.get_title() == "test"
ptX = grove.tomography.operator_utils.PAULI_BASIS.transfer_matrix(qt.to_super(
grove.tomography.operator_utils.QX)).toarray()
ax = Mock()
with patch("matplotlib.pyplot.colorbar"):
ut.plot_pauli_transfer_matrix(ptX, ax, grove.tomography.operator_utils.PAULI_BASIS.labels, "bla")
assert ax.imshow.called
assert ax.set_xlabel.called
assert ax.set_ylabel.called
示例14: __init__
# 需要導入模塊: from mpl_toolkits import mplot3d [as 別名]
# 或者: from mpl_toolkits.mplot3d import Axes3D [as 別名]
def __init__(self, dim=2, parent=None):
self.fig = Figure(figsize=(10, 10), dpi=100)
self.dim = dim
FigureCanvasQTAgg.__init__(self, self.fig)
self.setParent(parent)
FigureCanvasQTAgg.setSizePolicy(self, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding)
FigureCanvasQTAgg.updateGeometry(self)
if dim==2:
self.ax = self.fig.add_subplot(111)
self.ax.figure.subplots_adjust(left=0.08, right=0.98, bottom=0.08, top=0.92)
else:
self.ax = Axes3D(self.fig)
self.ax.mouse_init(rotate_btn=1, zoom_btn=2)
FigureCanvasQTAgg.setSizePolicy(self, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding)
FigureCanvasQTAgg.updateGeometry(self)
示例15: MyPlot_surface
# 需要導入模塊: from mpl_toolkits import mplot3d [as 別名]
# 或者: from mpl_toolkits.mplot3d import Axes3D [as 別名]
def MyPlot_surface(self, lineNumber, data, stepX, stepY):
''' stepX = 2 # 采樣步長 X
stepY = 10 # 采樣步長 Y
'''
# ax = self.figure.add_axes([0.05,0.05,0.9,0.9],projection='3d')
# ax = Axes3D( self.figure )
X = range(0, len(data), stepX) #頻率
Y = range(0, len(data[0]), stepY) #時間
XX , YY= np.meshgrid(X, Y) # XX[i]、YY[i]代表時間 ; XX[0][i]、YY[0][i]代表頻率
ZZ = np.zeros([len( Y ), len( X )]) # ZZ[i]代表時間、ZZ[0][i]代表頻率
for i in range(0, len( Y )):
for j in range(0, len( X )):
ZZ[i][j] = data[ X[j] ][ Y[i] ]
# 具體函數方法可用 help(function) 查看,如:help(ax.plot_surface)
self.axList[lineNumber].plot_surface(XX, YY, ZZ, rstride=1, cstride=1, cmap='rainbow')
# self.canvas.draw()