本文整理匯總了Python中mpi4py.MPI.Get_processor_name方法的典型用法代碼示例。如果您正苦於以下問題:Python MPI.Get_processor_name方法的具體用法?Python MPI.Get_processor_name怎麽用?Python MPI.Get_processor_name使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mpi4py.MPI
的用法示例。
在下文中一共展示了MPI.Get_processor_name方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import Get_processor_name [as 別名]
def __init__(self):
# Initialize communicator and obtain standard MPI variables
comm = MPI.COMM_WORLD
self.comm = comm
self.rank = comm.Get_rank()
self.num_procs = comm.Get_size()
self.name = MPI.Get_processor_name()
# Define master rank
self.master_rank = 0
# Define message tags for task, result, and announce
self.task_tag = 10
self.result_tag = 20
self.announce_tag = 30
# create an empty message buffer
messages = []
示例2: worker_process
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import Get_processor_name [as 別名]
def worker_process(comm, rank, tags, status):
# Worker processes execute code below
name = MPI.Get_processor_name()
print("I am a worker with rank %d on %s." % (rank, name))
comm.send(None, dest=0, tag=tags.READY)
while True:
print('Recieving ...')
task = comm.recv(source=0, tag=MPI.ANY_TAG, status=status)
print('received!')
tag = status.Get_tag()
if tag == tags.START:
# Do the work here
result = task + 1
print('attempting to send ...')
comm.send(result, dest=0, tag=tags.DONE)
print('sending worked ...')
elif tag == tags.EXIT:
print('went through exit')
break
示例3: get_id_within_node
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import Get_processor_name [as 別名]
def get_id_within_node(comm=None):
from mpi4py import MPI
if comm is None: comm = MPI.COMM_WORLD
rank = comm.rank
nodename = MPI.Get_processor_name()
nodelist = comm.allgather(nodename)
return len([i for i in nodelist[:rank] if i==nodename])
示例4: _init_gpu
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import Get_processor_name [as 別名]
def _init_gpu(comm):
""" Chooses a gpu and creates a context on it. """
# Find out how many GPUs are available to us on this node.
driver.init()
num_gpus = driver.Device.count()
# Figure out the names of the other hosts.
rank = comm.Get_rank() # Find out which process I am.
name = MPI.Get_processor_name() # The name of my node.
hosts = comm.allgather(name) # Get the names of all the other hosts
# Find out which GPU to take (by precedence).
gpu_id = hosts[0:rank].count(name)
if gpu_id >= num_gpus:
raise TypeError('No GPU available.')
# Create a context on the appropriate device.
for k in range(num_gpus):
try:
device = driver.Device((gpu_id + k) % num_gpus)
context = device.make_context()
except:
continue
else:
# print "On %s: process %d taking gpu %d of %d.\n" % \
# (name, rank, gpu_id+k, num_gpus)
break
return device, context # Return device and context.
# Global variable for the global space.
# The leading double underscore should prevent outside modules from accessing
# this variable.
示例5: get_host
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import Get_processor_name [as 別名]
def get_host():
"""Get the hostname that this task is running on"""
return MPI.Get_processor_name()
示例6: _get_tasks
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import Get_processor_name [as 別名]
def _get_tasks(self):
"""
Internal generator that yields the next available task from a worker
"""
if self.is_root():
raise RuntimeError("Root rank mistakenly told to await tasks")
# logging info
if self.comm.rank == 0:
args = (self.rank, MPI.Get_processor_name(), self.comm.size)
self.logger.debug("worker master rank is %d on %s with %d processes available" %args)
# continously loop and wait for instructions
while True:
args = None
tag = -1
# have the master rank of the subcomm ask for task and then broadcast
if self.comm.rank == 0:
self.basecomm.send(None, dest=0, tag=self.tags.READY)
args = self.basecomm.recv(source=0, tag=MPI.ANY_TAG, status=self.status)
tag = self.status.Get_tag()
# bcast to everyone in the worker subcomm
args = self.comm.bcast(args) # args is [task_number, task_value]
tag = self.comm.bcast(tag)
# yield the task
if tag == self.tags.START:
# yield the task value
yield args
# wait for everyone in task group before telling master this task is done
self.comm.Barrier()
if self.comm.rank == 0:
self.basecomm.send([args[0], None], dest=0, tag=self.tags.DONE)
# see ya later
elif tag == self.tags.EXIT:
break
# wait for everyone in task group and exit
self.comm.Barrier()
if self.comm.rank == 0:
self.basecomm.send(None, dest=0, tag=self.tags.EXIT)
# debug logging
self.logger.debug("rank %d process is done waiting" %self.rank)
示例7: worker_process
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import Get_processor_name [as 別名]
def worker_process(comm, tags, status):
"""
Worker processes, that do the actual sampling.
They receive all arguments by the master process.
Parameters
----------
comm : mpi.communicator
tags : message tags
status : mpi.status object
"""
name = MPI.Get_processor_name()
logger.debug(
"Entering worker process with rank %d on %s." % (comm.rank, name))
comm.send(None, dest=0, tag=tags.READY)
logger.debug('Worker %i receiving work package ...' % comm.rank)
kwargs = comm.recv(source=0, tag=tags.INIT, status=status)
logger.debug('Worker %i received package!' % comm.rank)
try:
step = kwargs['step']
except KeyError:
raise ValueError('Step method not defined!')
# do initial sampling
result = sample_pt_chain(**kwargs)
comm.Send([result, MPI.DOUBLE], dest=0, tag=tags.DONE)
# enter repeated sampling
while True:
# TODO: make transd-compatible
data = num.empty(step.lordering.size, dtype=tconfig.floatX)
comm.Recv([data, MPI.DOUBLE],
tag=MPI.ANY_TAG, source=0, status=status)
tag = status.Get_tag()
if tag == tags.SAMPLE:
lpoint = step.lij.a2l(data)
start = step.lij.l2d(lpoint)
kwargs['start'] = start
# overwrite previous point in case got swapped
kwargs['step'].chain_previous_lpoint[comm.rank] = lpoint
result = sample_pt_chain(**kwargs)
logger.debug('Worker %i attempting to send ...' % comm.rank)
comm.Send([result, MPI.DOUBLE], dest=0, tag=tags.DONE)
logger.debug('Worker %i sent message successfully ...' % comm.rank)
elif tag == tags.BETA:
logger.debug(
'Worker %i received beta: %f' % (comm.rank, data[0]))
kwargs['step'].beta = data[0]
elif tag == tags.EXIT:
logger.debug('Worker %i went through EXIT!' % comm.rank)
break
示例8: get_device
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import Get_processor_name [as 別名]
def get_device(comm, num_masters=1, gpu_limit=-1, gpu_for_master=False):
"""Arguments:
comm: MPI intracommunicator containing all processes
num_masters: number of processes that will be assigned as masters
gpu_limit: maximum number of gpus to use on one host
gpu_for_master: whether master processes should be given a gpu
Returns device name 'cpu' or 'gpuN' appropriate for use with theano"""
def get_gpu_list(mem_lim = 2000):
import gpustat
stats = gpustat.GPUStatCollection.new_query()
ids = list(map(lambda gpu: int(gpu.entry['index']), stats))
ratios = map(lambda gpu: float(gpu.entry['memory.used'])/float(gpu.entry['memory.total']), stats)
#used = list(map(lambda gpu: float(gpu.entry['memory.used']), stats))
#unused_gpu = filter(lambda x: x[1] < 100.0, zip(ids, used))
free = list(map(lambda gpu: float(gpu.entry['memory.total'])-float(gpu.entry['memory.used']), stats))
unused_gpu = list(filter(lambda x: x[1] > mem_lim, zip(ids, free)))
return [x[0] for x in unused_gpu]
# Get the ranks of the other processes that share the same host
# and determine which GPU to take on the host
if gpu_limit==0:
logging.info("required to not use gpu")
dev = 'cpu'
return dev
rank = comm.Get_rank()
host = MPI.Get_processor_name()
hosts = comm.allgather(host)
workers_sharing_host = [ i for i in range(comm.Get_size()) if hosts[i] == host ]
if rank in workers_sharing_host:
worker_id = workers_sharing_host.index( rank )
else:
worker_id = -1
for inode in range( comm.Get_size()):
if rank == inode:
gpu_list = get_gpu_list()
if gpu_limit>=0:
gpu_list = gpu_list[:gpu_limit] #limit the number of gpu
if len(gpu_list) == 0:
logging.info("No free GPU available. Using CPU instead.")
dev = 'cpu'
elif worker_id<0:
## alone on that machine
logging.info("Alone on the node and taking the last gpu")
dev = 'gpu%d' % (gpu_list[-1])
else:
logging.debug("Sharing a node and taking on the gpu")
dev = 'gpu%d' % (gpu_list[worker_id%len(gpu_list)])
logging.debug("rank %d can have %s",rank,dev)
comm.Barrier()
return dev
示例9: spawn_load
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import Get_processor_name [as 別名]
def spawn_load(self):
'''spwan a parallel loading process using MPI'''
if not para_load:
return
from mpi4py import MPI
import os
import sys
hostname = MPI.Get_processor_name()
mpiinfo = MPI.Info.Create()
# will give all nodes filled issue if use key=host because need an additional slot
# also the hostname should be exactly the same in the output list of --display-allocation
if hostname != hostname.split('.')[0]:
hostname = hostname.split('.')[0]
mpiinfo.Set(key = 'add-host',value = hostname)
num_spawn = 1
if "CPULIST_train" in os.environ:
# see https://gist.github.com/lebedov/eadce02a320d10f0e81c
# print os.environ['CPULIST_train']
envstr=""
# for key, value in dict(os.environ).iteritems():
# envstr+= '%s=%s\n' % (key,value)
envstr+='CPULIST_train=%s\n' % os.environ['CPULIST_train']
mpiinfo.Set(key ='env', value = envstr)
ninfo = mpiinfo.Get_nkeys()
# print ninfo
mpicommand = sys.executable
file_dir = os.path.dirname(os.path.realpath(__file__))# get the dir of imagenet.py
self.icomm= MPI.COMM_SELF.Spawn(mpicommand,
args=[file_dir+'/proc_load_mpi.py'],
info = mpiinfo, maxprocs = num_spawn)