本文整理匯總了Python中models.get_model方法的典型用法代碼示例。如果您正苦於以下問題:Python models.get_model方法的具體用法?Python models.get_model怎麽用?Python models.get_model使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類models
的用法示例。
在下文中一共展示了models.get_model方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: import models [as 別名]
# 或者: from models import get_model [as 別名]
def main():
opt, logger, vis = utils.build(is_train=False)
dloader = data.get_data_loader(opt)
print('Val dataset: {}'.format(len(dloader.dataset)))
model = models.get_model(opt)
for epoch in opt.which_epochs:
# Load checkpoint
if epoch == -1:
# Find the latest checkpoint
checkpoints = glob.glob(os.path.join(opt.ckpt_path, 'net*.pth'))
assert len(checkpoints) > 0
epochs = [int(filename.split('_')[-1][:-4]) for filename in checkpoints]
epoch = max(epochs)
logger.print('Loading checkpoints from {}, epoch {}'.format(opt.ckpt_path, epoch))
model.load(opt.ckpt_path, epoch)
results = evaluate(opt, dloader, model)
for metric in results:
logger.print('{}: {}'.format(metric, results[metric]))
示例2: main
# 需要導入模塊: import models [as 別名]
# 或者: from models import get_model [as 別名]
def main(args):
set_cuda(args)
set_seed(args)
loader_train, loader_val, loader_test = get_data_loaders(args)
loss = get_loss(args)
model = get_model(args)
optimizer = get_optimizer(args, parameters=model.parameters())
xp = setup_xp(args, model, optimizer)
for i in range(args.epochs):
xp.epoch.update(i)
train(model, loss, optimizer, loader_train, args, xp)
test(model, loader_val, args, xp)
if (i + 1) in args.T:
decay_optimizer(optimizer, args.decay_factor)
load_best_model(model, xp)
test(model, loader_test, args, xp)
示例3: __init__
# 需要導入模塊: import models [as 別名]
# 或者: from models import get_model [as 別名]
def __init__(self):
"""Initializes exp."""
super().__init__()
self.name = "NFEL5836GRU"
self.description = "Sequence of normalized face, eyes and landmarks. Frozen static model, fine-tune fusion " \
"layers and train RNN-GRU module from scratch"
self.recurrent_type = "gru"
self.num_recurrent_layers = 1
self.num_recurrent_units = 128
self.look_back = 4
self.weights = exp_utils.NFEL5836GRU_VGG16
self.min_lndmk = exp_utils.NFEL5836GRU_MIN_LNMDK
self.max_lndmk = exp_utils.NFEL5836GRU_MAX_LNMDK
self.label_pos = -1
self.model = get_model("two_stream_rnn")
print(self.name)
print(self.description)
self.feature_arch = NFEL5836_2918()
self.base_model = self.feature_arch.base_model
示例4: __init__
# 需要導入模塊: import models [as 別名]
# 或者: from models import get_model [as 別名]
def __init__(self, model_path, gpu_id=None):
'''
初始化pytorch模型
:param model_path: 模型地址(可以是模型的參數或者參數和計算圖一起保存的文件)
:param gpu_id: 在哪一塊gpu上運行
'''
self.gpu_id = gpu_id
if self.gpu_id is not None and isinstance(self.gpu_id, int) and torch.cuda.is_available():
self.device = torch.device("cuda:%s" % self.gpu_id)
checkpoint = torch.load(model_path)
else:
self.device = torch.device("cpu")
checkpoint = torch.load(model_path, map_location='cpu')
print('device:', self.device)
config = checkpoint['config']
config['arch']['args']['pretrained'] = False
self.net = get_model(config)
self.img_channel = config['data_loader']['args']['dataset']['img_channel']
self.net.load_state_dict(checkpoint['state_dict']) ## load weights
self.net.to(self.device)
self.net.eval()
示例5: prepare_reg_feat
# 需要導入模塊: import models [as 別名]
# 或者: from models import get_model [as 別名]
def prepare_reg_feat(hseq_utils, reg_model, overwrite):
in_img_path = []
out_img_feat_list = []
for seq_name in hseq_utils.seqs:
for img_idx in range(1, 7):
img_feat_path = os.path.join(seq_name, '%d_img_feat.npy' % img_idx)
if not os.path.exists(img_feat_path) or overwrite:
in_img_path.append(os.path.join(seq_name, '%d.ppm' % img_idx))
out_img_feat_list.append(img_feat_path)
if len(in_img_path) > 0:
model = get_model('reg_model')(reg_model)
prog_bar = progressbar.ProgressBar()
prog_bar.max_value = len(in_img_path)
for idx, val in enumerate(in_img_path):
img = cv2.imread(val)
img = img[..., ::-1]
reg_feat = model.run_test_data(img)
np.save(out_img_feat_list[idx], reg_feat)
prog_bar.update(idx)
model.close()
示例6: extract_reg_feat
# 需要導入模塊: import models [as 別名]
# 或者: from models import get_model [as 別名]
def extract_reg_feat(config):
"""Extract regional features."""
prog_bar = progressbar.ProgressBar()
config['stage'] = 'reg'
dataset = get_dataset(config['data_name'])(**config)
prog_bar.max_value = dataset.data_length
test_set = dataset.get_test_set()
model = get_model('reg_model')(config['pretrained']['reg_model'], **(config['reg_feat']))
idx = 0
while True:
try:
data = next(test_set)
dump_path = data['dump_path'].decode('utf-8')
reg_f = h5py.File(dump_path, 'a')
if 'reg_feat' not in reg_f or config['reg_feat']['overwrite']:
reg_feat = model.run_test_data(data['image'])
if 'reg_feat' in reg_f:
del reg_f['reg_feat']
_ = reg_f.create_dataset('reg_feat', data=reg_feat)
prog_bar.update(idx)
idx += 1
except dataset.end_set:
break
model.close()
示例7: run
# 需要導入模塊: import models [as 別名]
# 或者: from models import get_model [as 別名]
def run(config, num_checkpoint, epoch_end, output_filename):
dataloader = get_dataloader(config, 'train', get_transform(config, 'val'))
model = get_model(config).cuda()
checkpoints = get_checkpoints(config, num_checkpoint, epoch_end)
utils.checkpoint.load_checkpoint(model, None, checkpoints[0])
for i, checkpoint in enumerate(checkpoints[1:]):
model2 = get_model(config).cuda()
last_epoch, _ = utils.checkpoint.load_checkpoint(model2, None, checkpoint)
swa.moving_average(model, model2, 1. / (i + 2))
with torch.no_grad():
swa.bn_update(dataloader, model)
output_name = '{}.{}.{:03d}'.format(output_filename, num_checkpoint, last_epoch)
print('save {}'.format(output_name))
utils.checkpoint.save_checkpoint(config, model, None, 0, 0,
name=output_name,
weights_dict={'state_dict': model.state_dict()})
示例8: run
# 需要導入模塊: import models [as 別名]
# 或者: from models import get_model [as 別名]
def run(config):
train_dir = config.train.dir
model = get_model(config).cuda()
criterion = get_loss(config)
optimizer = get_optimizer(config, model.parameters())
checkpoint = utils.checkpoint.get_initial_checkpoint(config)
if checkpoint is not None:
last_epoch, step = utils.checkpoint.load_checkpoint(model, optimizer, checkpoint)
else:
last_epoch, step = -1, -1
print('from checkpoint: {} last epoch:{}'.format(checkpoint, last_epoch))
scheduler = get_scheduler(config, optimizer, last_epoch)
dataloaders = {split:get_dataloader(config, split, get_transform(config, split))
for split in ['train', 'val']}
writer = SummaryWriter(config.train.dir)
train(config, model, dataloaders, criterion, optimizer, scheduler,
writer, last_epoch+1)
示例9: __init__
# 需要導入模塊: import models [as 別名]
# 或者: from models import get_model [as 別名]
def __init__(self, config):
self.anchors = [np.array(LandmarkDetector.RATIO) * s for s in LandmarkDetector.SCALE]
self.anchors = np.concatenate(self.anchors, axis=0)
assert self.anchors.shape == (len(LandmarkDetector.SCALE) * len(LandmarkDetector.RATIO), 2)
self.feature_size = config.model.params.feature_size
self.num_anchors = len(LandmarkDetector.SCALE) * len(LandmarkDetector.RATIO)
num_outputs = LandmarkDetector.NUM_OUTPUTS
self.model = get_model(config, num_outputs=num_outputs)
self.model.avgpool = nn.AdaptiveAvgPool2d(self.feature_size)
in_features = self.model.last_linear.in_features
self.model.last_linear = nn.Conv2d(in_channels=in_features,
out_channels=len(self.anchors)*num_outputs,
kernel_size=1)
def logits(self, features):
x = self.avgpool(features)
x = self.last_linear(x)
return x
self.model.logits = types.MethodType(logits, self.model)
if torch.cuda.device_count() > 1:
self.model = torch.nn.DataParallel(self.model)
self.model = self.model.cuda()
self.preprocess_opt = {'mean': self.model.mean,
'std': self.model.std,
'input_range': self.model.input_range,
'input_space': self.model.input_space}
self.criterion = get_loss(config)
self.cls_criterion = F.binary_cross_entropy_with_logits
示例10: get_model
# 需要導入模塊: import models [as 別名]
# 或者: from models import get_model [as 別名]
def get_model(self):
return self.model
示例11: __init__
# 需要導入模塊: import models [as 別名]
# 或者: from models import get_model [as 別名]
def __init__(self, config):
super().__init__()
num_outputs = config.model.params.num_outputs
feature_size = config.model.params.feature_size
if 'channel_size' in config.model.params:
channel_size = config.model.params.channel_size
else:
channel_size = 512
self.model = get_model(config)
if isinstance(self.model.last_linear, nn.Conv2d):
in_features = self.model.last_linear.in_channels
else:
in_features = self.model.last_linear.in_features
self.bn1 = nn.BatchNorm2d(in_features)
self.dropout = nn.Dropout2d(config.model.params.drop_rate, inplace=True)
self.fc1 = nn.Linear(in_features * feature_size * feature_size, channel_size)
self.bn2 = nn.BatchNorm1d(channel_size)
s = config.model.params.s if 's' in config.model.params else 65
m = config.model.params.m if 'm' in config.model.params else 0.5
self.arc = ArcModule(channel_size, num_outputs, s=s, m=m)
if config.model.params.pretrained:
self.mean = self.model.mean
self.std = self.model.std
self.input_range = self.model.input_range
self.input_space = self.model.input_space
else:
self.mean = [0.5, 0.5, 0.5]
self.std = [0.5, 0.5, 0.5]
self.input_range = [0, 1]
self.input_space = 'RGB'
示例12: main
# 需要導入模塊: import models [as 別名]
# 或者: from models import get_model [as 別名]
def main(args):
"""Run testing."""
test_data = utils.read_data(args, "test")
print("total test samples:%s" % test_data.num_examples)
if args.random_other:
print("warning, testing mode with 'random_other' will result in "
"different results every run...")
model = models.get_model(args, gpuid=args.gpuid)
tfconfig = tf.ConfigProto(allow_soft_placement=True)
tfconfig.gpu_options.allow_growth = True
tfconfig.gpu_options.visible_device_list = "%s" % (
",".join(["%s" % i for i in [args.gpuid]]))
with tf.Session(config=tfconfig) as sess:
utils.initialize(load=True, load_best=args.load_best,
args=args, sess=sess)
# load the graph and variables
tester = models.Tester(model, args, sess)
perf = utils.evaluate(test_data, args, sess, tester)
print("performance:")
numbers = []
for k in sorted(perf.keys()):
print("%s, %s" % (k, perf[k]))
numbers.append("%s" % perf[k])
print(" ".join(sorted(perf.keys())))
print(" ".join(numbers))
示例13: __init__
# 需要導入模塊: import models [as 別名]
# 或者: from models import get_model [as 別名]
def __init__(self, model_path, gpu_id=None):
"""
初始化gluon模型
:param model_path: 模型地址
:param gpu_id: 在哪一塊gpu上運行
"""
info = pickle.load(open(model_path.replace('.params', '.info'), 'rb'))
print('load {} epoch params'.format(info['epoch']))
config = info['config']
alphabet = config['dataset']['alphabet']
self.ctx = try_gpu(gpu_id)
self.transform = []
for t in config['dataset']['train']['dataset']['args']['transforms']:
if t['type'] in ['ToTensor', 'Normalize']:
self.transform.append(t)
self.transform = get_transforms(self.transform)
self.gpu_id = gpu_id
img_h, img_w = 32, 100
for process in config['dataset']['train']['dataset']['args']['pre_processes']:
if process['type'] == "Resize":
img_h = process['args']['img_h']
img_w = process['args']['img_w']
break
self.img_w = img_w
self.img_h = img_h
self.img_mode = config['dataset']['train']['dataset']['args']['img_mode']
self.alphabet = alphabet
self.net = get_model(len(alphabet), self.ctx, config['arch']['args'])
self.net.load_parameters(model_path, self.ctx)
# self.net = gluon.SymbolBlock.imports('crnn_lite-symbol.json', ['data'], 'crnn_lite-0000.params', ctx=self.ctx)
self.net.hybridize()
示例14: main
# 需要導入模塊: import models [as 別名]
# 或者: from models import get_model [as 別名]
def main(config):
train_loader = get_dataloader(config['data_loader']['type'], config['data_loader']['args'])
criterion = get_loss(config).cuda()
model = get_model(config)
trainer = Trainer(config=config,
model=model,
criterion=criterion,
train_loader=train_loader)
trainer.train()
示例15: extract_loc_feat
# 需要導入模塊: import models [as 別名]
# 或者: from models import get_model [as 別名]
def extract_loc_feat(config):
"""Extract local features."""
prog_bar = progressbar.ProgressBar()
config['stage'] = 'loc'
dataset = get_dataset(config['data_name'])(**config)
prog_bar.max_value = dataset.data_length
test_set = dataset.get_test_set()
model = get_model('loc_model')(config['pretrained']['loc_model'], **(config['loc_feat']))
idx = 0
while True:
try:
data = next(test_set)
dump_path = data['dump_path'].decode('utf-8')
loc_f = h5py.File(dump_path, 'a')
if 'loc_info' not in loc_f and 'kpt' not in loc_f or config['loc_feat']['overwrite']:
# detect SIFT keypoints and crop image patches.
loc_feat, kpt_mb, npy_kpts, cv_kpts, _ = model.run_test_data(data['image'])
loc_info = np.concatenate((npy_kpts, loc_feat, kpt_mb), axis=-1)
raw_kpts = [np.array((i.pt[0], i.pt[1], i.size, i.angle, i.response))
for i in cv_kpts]
raw_kpts = np.stack(raw_kpts, axis=0)
loc_info = np.concatenate((raw_kpts, loc_info), axis=-1)
if 'loc_info' in loc_f or 'kpt' in loc_f:
del loc_f['loc_info']
_ = loc_f.create_dataset('loc_info', data=loc_info)
prog_bar.update(idx)
idx += 1
except dataset.end_set:
break
model.close()