本文整理匯總了Python中models.create_model方法的典型用法代碼示例。如果您正苦於以下問題:Python models.create_model方法的具體用法?Python models.create_model怎麽用?Python models.create_model使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類models
的用法示例。
在下文中一共展示了models.create_model方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: import models [as 別名]
# 或者: from models import create_model [as 別名]
def main(extra_flags):
# Check no unknown flags was passed.
assert len(extra_flags) >= 1
if len(extra_flags) > 1:
raise ValueError('Received unknown flags: %s' % extra_flags[1:])
# Get parameters from FLAGS passed.
params = parameters.make_params_from_flags()
deploy.setup_env(params)
parameters.save_params(params, params.train_dir)
# TF log...
tfversion = deploy.tensorflow_version_tuple()
deploy.log_fn('TensorFlow: %i.%i' % (tfversion[0], tfversion[1]))
# Create model and dataset.
dataset = datasets.create_dataset(
params.data_dir, params.data_name, params.data_subset)
model = models.create_model(params.model, dataset)
set_model_params(model, params)
# Run CNN trainer.
trainer = deploy.TrainerCNN(dataset, model, params)
trainer.print_info()
trainer.run()
示例2: test_utils
# 需要導入模塊: import models [as 別名]
# 或者: from models import create_model [as 別名]
def test_utils():
model = models.create_model(False, 'cifar10', 'resnet20_cifar', parallel=False)
assert model is not None
p = distiller.model_find_param(model, "")
assert p is None
# Search for a parameter by its "non-parallel" name
p = distiller.model_find_param(model, "layer1.0.conv1.weight")
assert p is not None
# Search for a module name
module_to_find = None
for name, m in model.named_modules():
if name == "layer1.0.conv1":
module_to_find = m
break
assert module_to_find is not None
module_name = distiller.model_find_module_name(model, module_to_find)
assert module_name == "layer1.0.conv1"
示例3: run_test
# 需要導入模塊: import models [as 別名]
# 或者: from models import create_model [as 別名]
def run_test(epoch=-1):
print('Running Test')
opt = TestOptions().parse()
opt.serial_batches = True # no shuffle
dataset = DataLoader(opt)
model = create_model(opt)
writer = Writer(opt)
# test
writer.reset_counter()
for i, data in enumerate(dataset):
model.set_input(data)
ncorrect, nexamples = model.test()
writer.update_counter(ncorrect, nexamples)
writer.print_acc(epoch, writer.acc)
return writer.acc
示例4: load
# 需要導入模塊: import models [as 別名]
# 或者: from models import create_model [as 別名]
def load(self, checkpoint_path, model_name='tacotron'):
print('Constructing model: %s' % model_name)
inputs = tf.placeholder(tf.int32, [1, None], 'inputs')
reference_mel = tf.placeholder(tf.float32, [1, None, 80], 'reference_mel')
input_lengths = tf.placeholder(tf.int32, [1], 'input_lengths')
with tf.variable_scope('model') as scope:
self.model = create_model(model_name, hparams)
self.model.initialize(inputs, input_lengths, reference_mel=reference_mel)
self.wav_output = audio.inv_spectrogram_tensorflow(self.model.linear_outputs[0])
print('Loading checkpoint: %s' % checkpoint_path)
self.session = tf.Session()
self.session.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.restore(self.session, checkpoint_path)
示例5: main
# 需要導入模塊: import models [as 別名]
# 或者: from models import create_model [as 別名]
def main():
opt = TestOptions().parse()
opt.is_flip = False
opt.batchSize = 1
data_loader = CreateDataLoader(opt)
model = create_model(opt)
web_dir = os.path.join(opt.results_dir, 'test')
webpage = html.HTML(web_dir, 'task {}'.format(opt.exp_name))
for i, data in enumerate(islice(data_loader, opt.how_many)):
print('process input image %3.3d/%3.3d' % (i, opt.how_many))
results = model.translation(data)
img_path = 'image%3.3i' % i
save_images(webpage, results, img_path, None, width=opt.fine_size)
webpage.save()
示例6: main
# 需要導入模塊: import models [as 別名]
# 或者: from models import create_model [as 別名]
def main():
opt = TrainOptions().parse()
data_loader = CreateDataLoader(opt)
dataset_size = len(data_loader) * opt.batch_size
visualizer = Visualizer(opt)
model = create_model(opt)
start_epoch = model.start_epoch
total_steps = start_epoch*dataset_size
for epoch in range(start_epoch+1, opt.niter+opt.niter_decay+1):
epoch_start_time = time.time()
model.update_lr()
save_result = True
for i, data in enumerate(data_loader):
iter_start_time = time.time()
total_steps += opt.batch_size
epoch_iter = total_steps - dataset_size * (epoch - 1)
model.prepare_data(data)
model.update_model()
if save_result or total_steps % opt.display_freq == 0:
save_result = save_result or total_steps % opt.update_html_freq == 0
visualizer.display_current_results(model.get_current_visuals(), epoch, ncols=1, save_result=save_result)
save_result = False
if total_steps % opt.print_freq == 0:
errors = model.get_current_errors()
t = (time.time() - iter_start_time) / opt.batch_size
visualizer.print_current_errors(epoch, epoch_iter, errors, t)
if opt.display_id > 0:
visualizer.plot_current_errors(epoch, float(epoch_iter)/dataset_size, opt, errors)
print('epoch {} cost dime {}'.format(epoch,time.time()-epoch_start_time))
model.save_ckpt(epoch)
model.save_generator('latest')
if epoch % opt.save_epoch_freq == 0:
print('saving the generator at the end of epoch {}, iters {}'.format(epoch, total_steps))
model.save_generator(epoch)
示例7: load
# 需要導入模塊: import models [as 別名]
# 或者: from models import create_model [as 別名]
def load(self, checkpoint_path, model_name='tacotron'):
print('Constructing model: %s' % model_name)
inputs = tf.placeholder(tf.int32, [1, None], 'inputs')
input_lengths = tf.placeholder(tf.int32, [1], 'input_lengths')
with tf.variable_scope('model') as scope:
self.model = create_model(model_name, hparams)
self.model.initialize(inputs, input_lengths)
self.wav_output = audio.inv_spectrogram_tensorflow(self.model.linear_outputs[0])
print('Loading checkpoint: %s' % checkpoint_path)
self.session = tf.Session()
self.session.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.restore(self.session, checkpoint_path)
示例8: main
# 需要導入模塊: import models [as 別名]
# 或者: from models import create_model [as 別名]
def main(extra_flags):
# Check no unknown flags was passed.
assert len(extra_flags) >= 1
if len(extra_flags) > 1:
raise ValueError('Received unknown flags: %s' % extra_flags[1:])
# Get parameters from FLAGS passed.
params = parameters.make_params_from_flags()
deploy.setup_env(params)
# Training parameters, update using json file.
params = replace_with_train_params(params)
# TF log...
tfversion = deploy.tensorflow_version_tuple()
deploy.log_fn('TensorFlow: %i.%i' % (tfversion[0], tfversion[1]))
# Create model and dataset.
dataset = datasets.create_dataset(
params.data_dir, params.data_name, params.data_subset)
model = models.create_model(params.model, dataset)
train.set_model_params(model, params)
# Set the number of batches to the size of the eval dataset.
params = params._replace(
num_batches=int(dataset.num_examples_per_epoch() / (params.batch_size * params.num_gpus)))
# Run CNN trainer.
trainer = deploy.TrainerCNN(dataset, model, params)
trainer.print_info()
trainer.run()
示例9: create_graph
# 需要導入模塊: import models [as 別名]
# 或者: from models import create_model [as 別名]
def create_graph(dataset, arch):
if dataset == 'imagenet':
dummy_input = torch.randn((1, 3, 224, 224), requires_grad=False)
elif dataset == 'cifar10':
dummy_input = torch.randn((1, 3, 32, 32))
assert dummy_input is not None, "Unsupported dataset ({}) - aborting draw operation".format(dataset)
model = create_model(False, dataset, arch, parallel=False)
assert model is not None
return SummaryGraph(model, dummy_input.cuda())
示例10: test_load
# 需要導入模塊: import models [as 別名]
# 或者: from models import create_model [as 別名]
def test_load():
logger = logging.getLogger('simple_example')
logger.setLevel(logging.INFO)
model = create_model(False, 'cifar10', 'resnet20_cifar')
model, compression_scheduler, start_epoch = load_checkpoint(model, '../examples/ssl/checkpoints/checkpoint_trained_dense.pth.tar')
assert compression_scheduler is not None
assert start_epoch == 180
示例11: test_load_negative
# 需要導入模塊: import models [as 別名]
# 或者: from models import create_model [as 別名]
def test_load_negative():
with pytest.raises(FileNotFoundError):
model = create_model(False, 'cifar10', 'resnet20_cifar')
model, compression_scheduler, start_epoch = load_checkpoint(model, 'THIS_IS_AN_ERROR/checkpoint_trained_dense.pth.tar')
示例12: setup_test
# 需要導入模塊: import models [as 別名]
# 或者: from models import create_model [as 別名]
def setup_test(arch, dataset, parallel):
model = create_model(False, dataset, arch, parallel=parallel)
assert model is not None
# Create the masks
zeros_mask_dict = {}
for name, param in model.named_parameters():
masker = distiller.ParameterMasker(name)
zeros_mask_dict[name] = masker
return model, zeros_mask_dict
示例13: name_test
# 需要導入模塊: import models [as 別名]
# 或者: from models import create_model [as 別名]
def name_test(dataset, arch):
model = create_model(False, dataset, arch, parallel=False)
modelp = create_model(False, dataset, arch, parallel=True)
assert model is not None and modelp is not None
mod_names = [mod_name for mod_name, _ in model.named_modules()]
mod_names_p = [mod_name for mod_name, _ in modelp.named_modules()]
assert mod_names is not None and mod_names_p is not None
assert len(mod_names)+1 == len(mod_names_p)
for i in range(len(mod_names)-1):
assert mod_names[i+1] == normalize_module_name(mod_names_p[i+2])
logging.debug("{} {} {}".format(mod_names_p[i+2], mod_names[i+1], normalize_module_name(mod_names_p[i+2])))
assert mod_names_p[i+2] == denormalize_module_name(modelp, mod_names[i+1])
示例14: main
# 需要導入模塊: import models [as 別名]
# 或者: from models import create_model [as 別名]
def main():
global args, best_top1
args = parse()
if not args.no_logger:
tee.Tee(args.cache + '/log.txt')
print(vars(args))
seed(args.manual_seed)
model, criterion, optimizer = create_model(args)
if args.resume:
best_top1 = checkpoints.load(args, model, optimizer)
print(model)
trainer = train.Trainer()
loaders = get_dataset(args)
train_loader = loaders[0]
if args.evaluate:
scores = validate(trainer, loaders, model, criterion, args)
checkpoints.score_file(scores, "{}/model_000.txt".format(args.cache))
return
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
trainer.train_sampler.set_epoch(epoch)
scores = {}
scores.update(trainer.train(train_loader, model, criterion, optimizer, epoch, args))
scores.update(validate(trainer, loaders, model, criterion, args, epoch))
is_best = scores[args.metric] > best_top1
best_top1 = max(scores[args.metric], best_top1)
checkpoints.save(epoch, args, model, optimizer, is_best, scores, args.metric)
if not args.nopdb:
pdb.set_trace()
示例15: create_inference_graph
# 需要導入模塊: import models [as 別名]
# 或者: from models import create_model [as 別名]
def create_inference_graph(wanted_words, sample_rate, clip_duration_ms,
clip_stride_ms, window_size_ms, window_stride_ms,
dct_coefficient_count, model_architecture):
"""Creates an audio model with the nodes needed for inference.
Uses the supplied arguments to create a model, and inserts the input and
output nodes that are needed to use the graph for inference.
Args:
wanted_words: Comma-separated list of the words we're trying to recognize.
sample_rate: How many samples per second are in the input audio files.
clip_duration_ms: How many samples to analyze for the audio pattern.
clip_stride_ms: How often to run recognition. Useful for models with cache.
window_size_ms: Time slice duration to estimate frequencies from.
window_stride_ms: How far apart time slices should be.
dct_coefficient_count: Number of frequency bands to analyze.
model_architecture: Name of the kind of model to generate.
"""
words_list = input_data.prepare_words_list(wanted_words.split(','))
model_settings = models.prepare_model_settings(
len(words_list), sample_rate, clip_duration_ms, window_size_ms,
window_stride_ms, dct_coefficient_count)
runtime_settings = {'clip_stride_ms': clip_stride_ms}
wav_data_placeholder = tf.placeholder(tf.string, [], name='wav_data')
decoded_sample_data = contrib_audio.decode_wav(
wav_data_placeholder,
desired_channels=1,
desired_samples=model_settings['desired_samples'],
name='decoded_sample_data')
spectrogram = contrib_audio.audio_spectrogram(
decoded_sample_data.audio,
window_size=model_settings['window_size_samples'],
stride=model_settings['window_stride_samples'],
magnitude_squared=True)
fingerprint_input = contrib_audio.mfcc(
spectrogram,
decoded_sample_data.sample_rate,
dct_coefficient_count=dct_coefficient_count)
fingerprint_frequency_size = model_settings['dct_coefficient_count']
fingerprint_time_size = model_settings['spectrogram_length']
reshaped_input = tf.reshape(fingerprint_input, [
-1, fingerprint_time_size * fingerprint_frequency_size
])
logits = models.create_model(
reshaped_input, model_settings, model_architecture, is_training=False,
runtime_settings=runtime_settings)
# Create an output to use for inference.
tf.nn.softmax(logits, name='labels_softmax')