當前位置: 首頁>>代碼示例>>Python>>正文


Python models.Discriminator方法代碼示例

本文整理匯總了Python中models.Discriminator方法的典型用法代碼示例。如果您正苦於以下問題:Python models.Discriminator方法的具體用法?Python models.Discriminator怎麽用?Python models.Discriminator使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在models的用法示例。


在下文中一共展示了models.Discriminator方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_model

# 需要導入模塊: import models [as 別名]
# 或者: from models import Discriminator [as 別名]
def build_model(self):
        Gen=GeneratorTypes[self.gan_type]
        config=self.config
        self.gen=Gen(config.batch_size,config.gen_hidden_size,config.gen_z_dim)

        with tf.variable_scope('Disc') as scope:
            self.D1 = Discriminator(self.data.X, config.disc_hidden_size)
            scope.reuse_variables()
            self.D2 = Discriminator(self.gen.X, config.disc_hidden_size)
            d_var = tf.contrib.framework.get_variables(scope)

        d_loss_real=tf.reduce_mean( sxe(self.D1,1) )
        d_loss_fake=tf.reduce_mean( sxe(self.D2,0) )
        self.loss_d =  d_loss_real  +  d_loss_fake
        self.loss_g = tf.reduce_mean( sxe(self.D2,1) )

        optimizer=tf.train.AdamOptimizer
        g_optimizer=optimizer(self.config.lr_gen)
        d_optimizer=optimizer(self.config.lr_disc)
        self.opt_d = d_optimizer.minimize(self.loss_d,var_list= d_var)
        self.opt_g = g_optimizer.minimize(self.loss_g,var_list= self.gen.tr_var,
                               global_step=self.gen.step)

        with tf.control_dependencies([self.inc_step]):
            self.train_op=tf.group(self.opt_d,self.opt_g) 
開發者ID:mkocaoglu,項目名稱:CausalGAN,代碼行數:27,代碼來源:trainer.py

示例2: build_models

# 需要導入模塊: import models [as 別名]
# 或者: from models import Discriminator [as 別名]
def build_models(hps, current_res_w, use_ema_sampling=False, num_classes=None, label_list=None): # todo: fix num_classes
    mapping_network = MappingNetwork() if hps.do_mapping_network else None
    gen_model = Generator(current_res_w, hps.res_w, use_pixel_norm=hps.do_pixel_norm,
                          start_shape=(hps.start_res_h, hps.start_res_w),
                          equalized_lr=hps.do_equalized_lr,
                          traditional_input=hps.do_traditional_input,
                          add_noise=hps.do_add_noise,
                          resize_method=hps.resize_method,
                          use_mapping_network=hps.do_mapping_network,
                          cond_layers=hps.cond_layers,
                          map_cond=hps.map_cond)
    dis_model = Discriminator(current_res_w, equalized_lr=hps.do_equalized_lr,
                              do_minibatch_stddev=hps.do_minibatch_stddev,
                              end_shape=(hps.start_res_h, hps.start_res_w),
                              resize_method=hps.resize_method, cgan_nclasses=num_classes,
                              label_list=label_list)
    if use_ema_sampling:
        sampling_model = Generator(current_res_w, hps.res_w, use_pixel_norm=hps.do_pixel_norm,
                                   start_shape=(hps.start_res_h, hps.start_res_w),
                                   equalized_lr=hps.do_equalized_lr,
                                   traditional_input=hps.do_traditional_input,
                                   add_noise=hps.do_add_noise,
                                   resize_method=hps.resize_method,
                                   use_mapping_network=hps.do_mapping_network,
                                   cond_layers=hps.cond_layers,
                                   map_cond=hps.map_cond)
        return gen_model, mapping_network, dis_model, sampling_model
    else:
        return gen_model, mapping_network, dis_model 
開發者ID:nolan-dev,項目名稱:stylegan_reimplementation,代碼行數:31,代碼來源:train.py

示例3: __init__

# 需要導入模塊: import models [as 別名]
# 或者: from models import Discriminator [as 別名]
def __init__(self, z_dim=32, h_dim=128, filter_num=64, channel_num=3,
                 lr=1e-3, cuda=False):
        # Are we cuda'ing it
        self.cuda = cuda

        # Encoder, decoder, discriminator
        self.encoder = self.cudafy_(
            Encoder(z_dim, h_dim=h_dim, filter_num=filter_num,
                    channel_num=channel_num)
        )
        self.encoder.apply(weight_init)

        self.decoder = self.cudafy_(
            Decoder(z_dim, filter_num=filter_num, channel_num=channel_num)
        )
        self.decoder.apply(weight_init)

        self.discrim = self.cudafy_(Discriminator(z_dim))
        self.discrim.apply(weight_init)

        # Optimizers
        generator_params = list(self.encoder.parameters()) + \
            list(self.decoder.parameters())
        self.optim_enc = optim.Adam(self.encoder.parameters(), lr=lr)
        self.optim_dec = optim.Adam(self.decoder.parameters(), lr=lr)
        self.optim_dis = optim.Adam(self.discrim.parameters(), lr=lr)
        self.optim_gen = optim.Adam(generator_params, lr=lr)

        self.start_epoch = 0 
開發者ID:kendricktan,項目名稱:drawlikebobross,代碼行數:31,代碼來源:trainer.py

示例4: build_model

# 需要導入模塊: import models [as 別名]
# 或者: from models import Discriminator [as 別名]
def build_model(self):
        # Define a generator and a discriminator
        from models import Discriminator
        from models import AdaInGEN as Generator
        self.count = 0
        self.D = Discriminator(
            self.config, debug=self.config.mode == 'train' and self.verbose)
        self.D = to_cuda(self.D)
        self.G = Generator(
            self.config, debug=self.config.mode == 'train' and self.verbose)
        self.G = to_cuda(self.G)

        if self.config.mode == 'train':
            self.d_optimizer = self.set_optimizer(
                self.D, self.config.d_lr, self.config.beta1, self.config.beta2)
            self.g_optimizer = self.set_optimizer(
                self.G, self.config.g_lr, self.config.beta1, self.config.beta2)

        # Start with trained model
        if self.config.pretrained_model and self.verbose:
            self.load_pretrained_model()

        if self.config.mode == 'train' and self.verbose:
            self.print_network(self.D, 'Discriminator')
            self.print_network(self.G, 'Generator')

    # ==================================================================#
    # ==================================================================# 
開發者ID:BCV-Uniandes,項目名稱:SMIT,代碼行數:30,代碼來源:solver.py

示例5: __init__

# 需要導入模塊: import models [as 別名]
# 或者: from models import Discriminator [as 別名]
def __init__(self,
                 device,
                 model,
                 model_num_labels,
                 image_nc,
                 box_min,
                 box_max,
                 model_path):
        output_nc = image_nc
        self.device = device
        self.model_num_labels = model_num_labels
        self.model = model
        self.input_nc = image_nc
        self.output_nc = output_nc
        self.box_min = box_min
        self.box_max = box_max
        self.model_path = model_path

        self.gen_input_nc = image_nc
        self.netG = models.Generator(self.gen_input_nc, image_nc).to(device)
        self.netDisc = models.Discriminator(image_nc).to(device)

        # initialize all weights
        self.netG.apply(weights_init)
        self.netDisc.apply(weights_init)

        # initialize optimizers
        self.optimizer_G = torch.optim.Adam(self.netG.parameters(),
                                            lr=0.001)
        self.optimizer_D = torch.optim.Adam(self.netDisc.parameters(),
                                            lr=0.001) 
開發者ID:PacktPublishing,項目名稱:Hands-On-Generative-Adversarial-Networks-with-PyTorch-1.x,代碼行數:33,代碼來源:advGAN.py


注:本文中的models.Discriminator方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。