當前位置: 首頁>>代碼示例>>Python>>正文


Python rpn_heads.generic_rpn_outputs方法代碼示例

本文整理匯總了Python中modeling.rpn_heads.generic_rpn_outputs方法的典型用法代碼示例。如果您正苦於以下問題:Python rpn_heads.generic_rpn_outputs方法的具體用法?Python rpn_heads.generic_rpn_outputs怎麽用?Python rpn_heads.generic_rpn_outputs使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在modeling.rpn_heads的用法示例。


在下文中一共展示了rpn_heads.generic_rpn_outputs方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from modeling import rpn_heads [as 別名]
# 或者: from modeling.rpn_heads import generic_rpn_outputs [as 別名]
def __init__(self):
        super().__init__()

        # For cache
        self.mapping_to_detectron = None
        self.orphans_in_detectron = None

        # Backbone for feature extraction
        self.Conv_Body = get_func(cfg.MODEL.CONV_BODY)()

        # Region Proposal Network
        if cfg.RPN.RPN_ON:
            self.RPN = rpn_heads.generic_rpn_outputs(
                self.Conv_Body.dim_out, self.Conv_Body.spatial_scale)

        if cfg.FPN.FPN_ON:
            # Only supports case when RPN and ROI min levels are the same
            assert cfg.FPN.RPN_MIN_LEVEL == cfg.FPN.ROI_MIN_LEVEL
            # RPN max level can be >= to ROI max level
            assert cfg.FPN.RPN_MAX_LEVEL >= cfg.FPN.ROI_MAX_LEVEL
            # FPN RPN max level might be > FPN ROI max level in which case we
            # need to discard some leading conv blobs (blobs are ordered from
            # max/coarsest level to min/finest level)
            self.num_roi_levels = cfg.FPN.ROI_MAX_LEVEL - cfg.FPN.ROI_MIN_LEVEL + 1

            # Retain only the spatial scales that will be used for RoI heads. `Conv_Body.spatial_scale`
            # may include extra scales that are used for RPN proposals, but not for RoI heads.
            self.Conv_Body.spatial_scale = self.Conv_Body.spatial_scale[-self.num_roi_levels:]

        # BBOX Branch
        if not cfg.MODEL.RPN_ONLY:
            self.Box_Head = get_func(cfg.FAST_RCNN.ROI_BOX_HEAD)(
                self.RPN.dim_out, self.roi_feature_transform, self.Conv_Body.spatial_scale)
            self.Box_Outs = fast_rcnn_heads.fast_rcnn_outputs(
                self.Box_Head.dim_out)

        # Mask Branch
        if cfg.MODEL.MASK_ON:
            self.Mask_Head = get_func(cfg.MRCNN.ROI_MASK_HEAD)(
                self.RPN.dim_out, self.roi_feature_transform, self.Conv_Body.spatial_scale)
            if getattr(self.Mask_Head, 'SHARE_RES5', False):
                self.Mask_Head.share_res5_module(self.Box_Head.res5)
            self.Mask_Outs = mask_rcnn_heads.mask_rcnn_outputs(self.Mask_Head.dim_out)

        # Keypoints Branch
        if cfg.MODEL.KEYPOINTS_ON:
            self.Keypoint_Head = get_func(cfg.KRCNN.ROI_KEYPOINTS_HEAD)(
                self.RPN.dim_out, self.roi_feature_transform, self.Conv_Body.spatial_scale)
            if getattr(self.Keypoint_Head, 'SHARE_RES5', False):
                self.Keypoint_Head.share_res5_module(self.Box_Head.res5)
            self.Keypoint_Outs = keypoint_rcnn_heads.keypoint_outputs(self.Keypoint_Head.dim_out)

        self._init_modules() 
開發者ID:roytseng-tw,項目名稱:Detectron.pytorch,代碼行數:55,代碼來源:model_builder.py

示例2: __init__

# 需要導入模塊: from modeling import rpn_heads [as 別名]
# 或者: from modeling.rpn_heads import generic_rpn_outputs [as 別名]
def __init__(self):
        super().__init__()

        # For cache
        self.mapping_to_detectron = None
        self.orphans_in_detectron = None

        # Backbone for feature extraction
        self.Conv_Body = get_func(cfg.MODEL.CONV_BODY)()

        # Region Proposal Network
        if cfg.RPN.RPN_ON:
            self.RPN = rpn_heads.generic_rpn_outputs(
                self.Conv_Body.dim_out, self.Conv_Body.spatial_scale)
            
        if cfg.FPN.FPN_ON:
            # Only supports case when RPN and ROI min levels are the same
            assert cfg.FPN.RPN_MIN_LEVEL == cfg.FPN.ROI_MIN_LEVEL
            # RPN max level can be >= to ROI max level
            assert cfg.FPN.RPN_MAX_LEVEL >= cfg.FPN.ROI_MAX_LEVEL
            # FPN RPN max level might be > FPN ROI max level in which case we
            # need to discard some leading conv blobs (blobs are ordered from
            # max/coarsest level to min/finest level)
            self.num_roi_levels = cfg.FPN.ROI_MAX_LEVEL - cfg.FPN.ROI_MIN_LEVEL + 1

            # Retain only the spatial scales that will be used for RoI heads. `Conv_Body.spatial_scale`
            # may include extra scales that are used for RPN proposals, but not for RoI heads.
            self.Conv_Body.spatial_scale = self.Conv_Body.spatial_scale[-self.num_roi_levels:]

        # BBOX Branch
        self.Box_Head = get_func(cfg.FAST_RCNN.ROI_BOX_HEAD)(
            self.RPN.dim_out, self.roi_feature_transform, self.Conv_Body.spatial_scale)
        self.Box_Outs = fast_rcnn_heads.fast_rcnn_outputs(
            self.Box_Head.dim_out)
            
        self.Prd_RCNN = copy.deepcopy(self)
        del self.Prd_RCNN.RPN
        del self.Prd_RCNN.Box_Outs
        
        # initialize word vectors
        ds_name = cfg.TRAIN.DATASETS[0] if len(cfg.TRAIN.DATASETS) else cfg.TEST.DATASETS[0]
        self.obj_vecs, self.prd_vecs = get_obj_prd_vecs(ds_name)
        
        # RelPN
        self.RelPN = relpn_heads.generic_relpn_outputs()
        # RelDN
        self.RelDN = reldn_heads.reldn_head(self.Box_Head.dim_out * 3, self.obj_vecs, self.prd_vecs)  # concat of SPO

        self._init_modules() 
開發者ID:jz462,項目名稱:Large-Scale-VRD.pytorch,代碼行數:51,代碼來源:model_builder_rel.py


注:本文中的modeling.rpn_heads.generic_rpn_outputs方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。