當前位置: 首頁>>代碼示例>>Python>>正文


Python modeling.BertModel方法代碼示例

本文整理匯總了Python中modeling.BertModel方法的典型用法代碼示例。如果您正苦於以下問題:Python modeling.BertModel方法的具體用法?Python modeling.BertModel怎麽用?Python modeling.BertModel使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在modeling的用法示例。


在下文中一共展示了modeling.BertModel方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_model

# 需要導入模塊: import modeling [as 別名]
# 或者: from modeling import BertModel [as 別名]
def create_model(bert_config, is_training, input_ids, input_mask, segment_ids,
                 use_one_hot_embeddings):
  """Creates a classification model."""
  model = modeling.BertModel(
      config=bert_config,
      is_training=is_training,
      input_ids=input_ids,
      input_mask=input_mask,
      token_type_ids=segment_ids,
      use_one_hot_embeddings=use_one_hot_embeddings)

  final_hidden = model.get_sequence_output()

  final_hidden_shape = modeling.get_shape_list(final_hidden, expected_rank=3)
  batch_size = final_hidden_shape[0]
  seq_length = final_hidden_shape[1]
  hidden_size = final_hidden_shape[2]

  output_weights = tf.get_variable(
      "cls/squad/output_weights", [2, hidden_size],
      initializer=tf.truncated_normal_initializer(stddev=0.02))

  output_bias = tf.get_variable(
      "cls/squad/output_bias", [2], initializer=tf.zeros_initializer())

  final_hidden_matrix = tf.reshape(final_hidden,
                                   [batch_size * seq_length, hidden_size])
  logits = tf.matmul(final_hidden_matrix, output_weights, transpose_b=True)
  logits = tf.nn.bias_add(logits, output_bias)

  logits = tf.reshape(logits, [batch_size, seq_length, 2])
  logits = tf.transpose(logits, [2, 0, 1])

  unstacked_logits = tf.unstack(logits, axis=0)

  (start_logits, end_logits) = (unstacked_logits[0], unstacked_logits[1])

  return (start_logits, end_logits) 
開發者ID:Nagakiran1,項目名稱:Extending-Google-BERT-as-Question-and-Answering-model-and-Chatbot,代碼行數:40,代碼來源:run_squad.py

示例2: create_model

# 需要導入模塊: import modeling [as 別名]
# 或者: from modeling import BertModel [as 別名]
def create_model(bert_config, is_training, input_ids, input_mask,
                 segment_ids, labels, num_labels, use_one_hot_embeddings):
    model = modeling.BertModel(
        config=bert_config,
        is_training=is_training,
        input_ids=input_ids,
        input_mask=input_mask,
        token_type_ids=segment_ids,
        use_one_hot_embeddings=use_one_hot_embeddings
    )

    output_layer = model.get_sequence_output()

    hidden_size = output_layer.shape[-1].value

    output_weight = tf.get_variable(
        "output_weights", [num_labels, hidden_size],
        initializer=tf.truncated_normal_initializer(stddev=0.02)
    )
    output_bias = tf.get_variable(
        "output_bias", [num_labels], initializer=tf.zeros_initializer()
    )
    with tf.variable_scope("loss"):
        if is_training:
            output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
        output_layer = tf.reshape(output_layer, [-1, hidden_size])
        logits = tf.matmul(output_layer, output_weight, transpose_b=True)
        logits = tf.nn.bias_add(logits, output_bias)
        logits = tf.reshape(logits, [-1, FLAGS.max_seq_length, num_labels])

        ##########################################################################
        log_probs = tf.nn.log_softmax(logits, axis=-1)
        one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
        per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
        loss = tf.reduce_sum(per_example_loss)
        probabilities = tf.nn.softmax(logits, axis=-1)
        predict = tf.argmax(probabilities,axis=-1)
        return (loss, per_example_loss, logits, log_probs, predict)
        ########################################################################## 
開發者ID:EmilyAlsentzer,項目名稱:clinicalBERT,代碼行數:41,代碼來源:run_ner.py

示例3: create_model

# 需要導入模塊: import modeling [as 別名]
# 或者: from modeling import BertModel [as 別名]
def create_model(bert_config, is_training, input_ids, input_mask, segment_ids,
                 use_one_hot_embeddings):
  """Creates a classification model."""
  model = modeling.BertModel(
      config=bert_config,
      is_training=is_training,
      input_ids=input_ids,
      input_mask=input_mask,
      token_type_ids=segment_ids,
      use_one_hot_embeddings=use_one_hot_embeddings)

  final_hidden = model.get_sequence_output()

  final_hidden_shape = modeling.get_shape_list(final_hidden, expected_rank=3)
  batch_size = final_hidden_shape[0]
  seq_length = final_hidden_shape[1]
  hidden_size = final_hidden_shape[2]

  output_weights = tf.compat.v1.get_variable(
      "cls/squad/output_weights", [2, hidden_size],
      initializer=tf.compat.v1.truncated_normal_initializer(stddev=0.02))

  output_bias = tf.compat.v1.get_variable(
      "cls/squad/output_bias", [2], initializer=tf.compat.v1.zeros_initializer())

  final_hidden_matrix = tf.reshape(final_hidden,
                                   [batch_size * seq_length, hidden_size])
  logits = tf.matmul(final_hidden_matrix, output_weights, transpose_b=True)
  logits = tf.nn.bias_add(logits, output_bias)

  logits = tf.reshape(logits, [batch_size, seq_length, 2])
  logits = tf.transpose(a=logits, perm=[2, 0, 1])

  unstacked_logits = tf.unstack(logits, axis=0)

  (start_logits, end_logits) = (unstacked_logits[0], unstacked_logits[1])

  return (start_logits, end_logits) 
開發者ID:IntelAI,項目名稱:models,代碼行數:40,代碼來源:run_squad.py

示例4: create_model

# 需要導入模塊: import modeling [as 別名]
# 或者: from modeling import BertModel [as 別名]
def create_model(bert_config, is_training, input_ids, input_mask, segment_ids,
                 use_one_hot_embeddings):
    """Creates a classification model."""
    model = modeling.BertModel(
        config=bert_config,
        is_training=is_training,
        input_ids=input_ids,
        input_mask=input_mask,
        token_type_ids=segment_ids,
        use_one_hot_embeddings=use_one_hot_embeddings)

    final_hidden = model.get_sequence_output()

    final_hidden_shape = modeling.get_shape_list(final_hidden, expected_rank=3)
    batch_size = final_hidden_shape[0]
    seq_length = final_hidden_shape[1]
    hidden_size = final_hidden_shape[2]

    output_weights = tf.get_variable(
        "cls/squad/output_weights", [2, hidden_size],
        initializer=tf.truncated_normal_initializer(stddev=0.02))

    output_bias = tf.get_variable(
        "cls/squad/output_bias", [2], initializer=tf.zeros_initializer())

    final_hidden_matrix = tf.reshape(final_hidden,
                                     [batch_size * seq_length, hidden_size])
    logits = tf.matmul(final_hidden_matrix, output_weights, transpose_b=True)
    logits = tf.nn.bias_add(logits, output_bias)

    logits = tf.reshape(logits, [batch_size, seq_length, 2])
    logits = tf.transpose(logits, [2, 0, 1])

    unstacked_logits = tf.unstack(logits, axis=0)

    (start_logits, end_logits) = (unstacked_logits[0], unstacked_logits[1])

    return (start_logits, end_logits) 
開發者ID:husseinmozannar,項目名稱:SOQAL,代碼行數:40,代碼來源:Bert_model.py

示例5: get_bert_outputs

# 需要導入模塊: import modeling [as 別名]
# 或者: from modeling import BertModel [as 別名]
def get_bert_outputs(self, input_ids, input_mask, segment_ids, extract_sentences, is_training):
        self.bert_config.hidden_dropout_prob = self.config["bert"]["hidden_dropout_prob"]
        bert_model = modeling.BertModel(config=self.bert_config,
                                        is_training=is_training if self.config["bert"]["is_training"] else False,
                                        # is_training=False,l
                                        input_ids=input_ids,
                                        input_mask=input_mask,
                                        token_type_ids=segment_ids)
        all_layers = bert_model.get_all_encoder_layers()
        lm_emb_chunks = tf.stack(all_layers[-self.config["lm_layers"]:], axis=-1)

        tvars = tf.trainable_variables()
        (assignment_map,
         initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(
            tvars, self.config["bert"]["init_checkpoint"])
        tf.train.init_from_checkpoint(self.config["bert"]["init_checkpoint"], assignment_map)

        tf.logging.info("**** Trainable Variables ****")
        for var in tvars:
            init_string = ""
            if var.name in initialized_variable_names:
                init_string = ", *INIT_FROM_CKPT*"
            tf.logging.info("  name = %s, shape = %s%s", var.name, var.shape,
                            init_string)

        emb_size = util.shape(lm_emb_chunks, 2)
        # extract_sentences is one-based, add a zero to the beginning of the flattened embedding
        lm_emb_chunks_flattened = tf.reshape(lm_emb_chunks, [-1, emb_size, self.config["lm_layers"]])
        lm_emb_chunks_flattened_one_based = tf.concat([tf.zeros([1, emb_size, self.config["lm_layers"]]),
                                                       lm_emb_chunks_flattened], axis=0)
        lm_emb = tf.gather(lm_emb_chunks_flattened_one_based, extract_sentences)

        return lm_emb 
開發者ID:kkjawz,項目名稱:coref-ee,代碼行數:35,代碼來源:coref_bert_model_2.py

示例6: bert_rep

# 需要導入模塊: import modeling [as 別名]
# 或者: from modeling import BertModel [as 別名]
def bert_rep(bert_config, is_training, input_ids, input_mask, segment_ids, history_answer_marker, use_one_hot_embeddings):
    model = modeling.BertModel(
        config=bert_config,
        is_training=is_training,
        input_ids=input_ids,
        input_mask=input_mask,
        token_type_ids=segment_ids,
        history_answer_marker=history_answer_marker,
        use_one_hot_embeddings=use_one_hot_embeddings)

    final_hidden = model.get_sequence_output()   
    return final_hidden 
開發者ID:prdwb,項目名稱:bert_hae,代碼行數:14,代碼來源:cqa_model.py

示例7: create_model

# 需要導入模塊: import modeling [as 別名]
# 或者: from modeling import BertModel [as 別名]
def create_model(self, bert_config, is_training, input_ids, input_mask, segment_ids, use_one_hot_embeddings):
        """Creates a classification model."""
        model = modeling.BertModel(
                config=bert_config,
                is_training=is_training,
                input_ids=input_ids,
                input_mask=input_mask,
                token_type_ids=segment_ids,
                use_one_hot_embeddings=use_one_hot_embeddings,
                compute_type=tf.float32)

        final_hidden = model.get_sequence_output()

        final_hidden_shape = modeling.get_shape_list(final_hidden, expected_rank=3)
        batch_size = final_hidden_shape[0]
        seq_length = final_hidden_shape[1]
        hidden_size = final_hidden_shape[2]

        output_weights = tf.get_variable(
                "cls/squad/output_weights", [2, hidden_size],
                initializer=tf.truncated_normal_initializer(stddev=0.02))

        output_bias = tf.get_variable(
                "cls/squad/output_bias", [2], initializer=tf.zeros_initializer())

        final_hidden_matrix = tf.reshape(final_hidden, [batch_size * seq_length, hidden_size])
        logits = tf.matmul(final_hidden_matrix, output_weights, transpose_b=True)
        logits = tf.nn.bias_add(logits, output_bias)

        logits = tf.reshape(logits, [batch_size, seq_length, 2])
        return logits

        # logits = tf.transpose(logits, [2, 0, 1])

        # unstacked_logits = tf.unstack(logits, axis=0, name='unstack')

        # (start_logits, end_logits) = (unstacked_logits[0], unstacked_logits[1])

        # return (start_logits, end_logits) 
開發者ID:mlperf,項目名稱:inference,代碼行數:41,代碼來源:tf_SUT.py

示例8: create_model

# 需要導入模塊: import modeling [as 別名]
# 或者: from modeling import BertModel [as 別名]
def create_model(self):
            input_ids = BertModelTest.ids_tensor([self.batch_size, self.seq_length],
                                                 self.vocab_size)

            input_mask = None
            if self.use_input_mask:
                input_mask = BertModelTest.ids_tensor(
                    [self.batch_size, self.seq_length], vocab_size=2)

            token_type_ids = None
            if self.use_token_type_ids:
                token_type_ids = BertModelTest.ids_tensor(
                    [self.batch_size, self.seq_length], self.type_vocab_size)

            config = modeling.BertConfig(
                vocab_size=self.vocab_size,
                hidden_size=self.hidden_size,
                num_hidden_layers=self.num_hidden_layers,
                num_attention_heads=self.num_attention_heads,
                intermediate_size=self.intermediate_size,
                hidden_act=self.hidden_act,
                hidden_dropout_prob=self.hidden_dropout_prob,
                attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
                type_vocab_size=self.type_vocab_size,
                initializer_range=self.initializer_range)

            model = modeling.BertModel(
                config=config,
                is_training=self.is_training,
                input_ids=input_ids,
                input_mask=input_mask,
                token_type_ids=token_type_ids,
                scope=self.scope)

            outputs = {
                "embedding_output": model.get_embedding_output(),
                "sequence_output": model.get_sequence_output(),
                "pooled_output": model.get_pooled_output(),
                "all_encoder_layers": model.get_all_encoder_layers(),
            }
            return outputs 
開發者ID:Socialbird-AILab,項目名稱:BERT-Classification-Tutorial,代碼行數:44,代碼來源:modeling_test.py

示例9: create_model

# 需要導入模塊: import modeling [as 別名]
# 或者: from modeling import BertModel [as 別名]
def create_model(bert_config, is_training, input_ids, input_mask, segment_ids,
                 labels, num_labels, use_one_hot_embeddings):
    """Creates a classification model."""
    model = modeling.BertModel(
        config=bert_config,
        is_training=is_training,
        input_ids=input_ids,
        input_mask=input_mask,
        token_type_ids=segment_ids,
        use_one_hot_embeddings=use_one_hot_embeddings)

    # %% Added layers for specific tasks

    # In the demo, we are doing a simple classification task on the entire
    # segment.
    #
    # If you want to use the token-level output, use model.get_sequence_output()
    # instead.

    # 768 hidden size
    # 128 seq length
    # 32 batch size
    output_layer = model.get_pooled_output()

    hidden_size = output_layer.shape[-1].value

    output_weights = tf.get_variable(
        "output_weights", [num_labels, hidden_size],
        initializer=tf.truncated_normal_initializer(stddev=0.02))

    output_bias = tf.get_variable(
        "output_bias", [num_labels], initializer=tf.zeros_initializer())

    with tf.variable_scope("loss"):
        if is_training:
            # I.e., 0.1 dropout
            output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)

        logits = tf.matmul(output_layer, output_weights, transpose_b=True)
        logits = tf.nn.bias_add(logits, output_bias)
        probabilities = tf.nn.softmax(logits, axis=-1)
        log_probs = tf.nn.log_softmax(logits, axis=-1)

        # correct_predictions = tf.equal(log_probs, labels)
        # accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")

        # size becomes binary 32*2
        # labels is the actual label value
        one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)

        per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
        loss = tf.reduce_mean(per_example_loss)

        return (loss, per_example_loss, logits, probabilities) 
開發者ID:Socialbird-AILab,項目名稱:BERT-Classification-Tutorial,代碼行數:56,代碼來源:run_classifier.py

示例10: create_model

# 需要導入模塊: import modeling [as 別名]
# 或者: from modeling import BertModel [as 別名]
def create_model(bert_config, is_training, input_ids, input_mask, segment_ids,
                 labels, num_labels, use_one_hot_embeddings):
    # 使用數據加載BertModel,獲取對應的字embedding
    # 即特征提取層
    model = modeling.BertModel(
        config=bert_config,
        is_training=is_training,
        input_ids=input_ids,
        input_mask=input_mask,
        token_type_ids=segment_ids,
        use_one_hot_embeddings=use_one_hot_embeddings)

    # 對模型進行fine_tuning
    # 要實現對模型的改造與使用,全部在這個函數中進行
    # 獲取對應的embedding 輸入數據[batch_size, seq_length, embedding_size]

    output_layer = model.get_sequence_output()

    hidden_size = output_layer.shape[-1].value

    output_weight = tf.get_variable(
        "output_weights", [num_labels, hidden_size],
        initializer=tf.truncated_normal_initializer(stddev=0.02)
    )
    output_bias = tf.get_variable(
        "output_bias", [num_labels], initializer=tf.zeros_initializer()
    )
    with tf.variable_scope("loss"):
        if is_training:
            output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)

        # 將詞性標注問題看做是對每個位置的詞的分類問題
        output_layer = tf.reshape(output_layer, [-1, hidden_size])
        logits = tf.matmul(output_layer, output_weight, transpose_b=True)
        logits = tf.nn.bias_add(logits, output_bias)
        logits = tf.reshape(logits, [-1, FLAGS.max_seq_length, num_labels])

        log_probs = tf.nn.log_softmax(logits, axis=-1)
        one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
        per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
        loss = tf.reduce_sum(per_example_loss)

        probabilities = tf.nn.softmax(logits, axis=-1)
        predict = tf.argmax(probabilities, axis=-1)

        return (loss, per_example_loss, logits, predict) 
開發者ID:fennuDetudou,項目名稱:tudouNLP,代碼行數:48,代碼來源:pos_tag.py

示例11: create_model

# 需要導入模塊: import modeling [as 別名]
# 或者: from modeling import BertModel [as 別名]
def create_model(bert_config, is_training, input_ids, input_mask, segment_ids,
                 labels, num_labels, use_one_hot_embeddings):
    # 使用數據加載BertModel,獲取對應的字embedding
    # 即特征提取層
    model = modeling.BertModel(
        config=bert_config,
        is_training=is_training,
        input_ids=input_ids,
        input_mask=input_mask,
        token_type_ids=segment_ids,
        use_one_hot_embeddings=use_one_hot_embeddings)

    # 對模型進行fine_tuning
    # 要實現對模型的改造與使用,全部在這個函數中進行


    output_layer = model.get_pooled_output()

    hidden_size = output_layer.shape[-1].value

    output_weights = tf.get_variable(
        "output_weights", [num_labels, hidden_size],
        initializer=tf.truncated_normal_initializer(stddev=0.02))

    output_bias = tf.get_variable(
        "output_bias", [num_labels], initializer=tf.zeros_initializer())

    with tf.variable_scope("loss"):
        if is_training:
            # I.e., 0.1 dropout
            output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)

        logits = tf.matmul(output_layer, output_weights, transpose_b=True)
        logits = tf.nn.bias_add(logits, output_bias)
        probabilities = tf.nn.softmax(logits, axis=-1)
        log_probs = tf.nn.log_softmax(logits, axis=-1)

        one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)

        per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
        loss = tf.reduce_mean(per_example_loss)

        return (loss, per_example_loss, logits, probabilities) 
開發者ID:fennuDetudou,項目名稱:tudouNLP,代碼行數:45,代碼來源:sentence.py

示例12: convert

# 需要導入模塊: import modeling [as 別名]
# 或者: from modeling import BertModel [as 別名]
def convert():
    # Initialise PyTorch model
    config = BertConfig.from_json_file(args.bert_config_file)
    model = BertModel(config)

    # Load weights from TF model
    path = args.tf_checkpoint_path
    print("Converting TensorFlow checkpoint from {}".format(path))

    init_vars = tf.train.list_variables(path)
    names = []
    arrays = []
    for name, shape in init_vars:
        print("Loading {} with shape {}".format(name, shape))
        array = tf.train.load_variable(path, name)
        print("Numpy array shape {}".format(array.shape))
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name[5:]  # skip "bert/"
        print("Loading {}".format(name))
        name = name.split('/')
        if name[0] in ['redictions', 'eq_relationship']:
            print("Skipping")
            continue
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
                l = re.split(r'_(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'kernel':
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        if m_name[-11:] == '_embeddings':
            pointer = getattr(pointer, 'weight')
        elif m_name == 'kernel':
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        pointer.data = torch.from_numpy(array)

    # Save pytorch-model
    torch.save(model.state_dict(), args.pytorch_dump_path) 
開發者ID:eva-n27,項目名稱:BERT-for-Chinese-Question-Answering,代碼行數:54,代碼來源:convert_tf_checkpoint_to_pytorch.py

示例13: create_model

# 需要導入模塊: import modeling [as 別名]
# 或者: from modeling import BertModel [as 別名]
def create_model(self):
      input_ids = BertModelTest.ids_tensor([self.batch_size, self.seq_length],
                                           self.vocab_size)

      input_mask = None
      if self.use_input_mask:
        input_mask = BertModelTest.ids_tensor(
            [self.batch_size, self.seq_length], vocab_size=2)

      token_type_ids = None
      if self.use_token_type_ids:
        token_type_ids = BertModelTest.ids_tensor(
            [self.batch_size, self.seq_length], self.type_vocab_size)

      config = modeling.BertConfig(
          vocab_size=self.vocab_size,
          hidden_size=self.hidden_size,
          num_hidden_layers=self.num_hidden_layers,
          num_attention_heads=self.num_attention_heads,
          intermediate_size=self.intermediate_size,
          hidden_act=self.hidden_act,
          hidden_dropout_prob=self.hidden_dropout_prob,
          attention_probs_dropout_prob=self.attention_probs_dropout_prob,
          max_position_embeddings=self.max_position_embeddings,
          type_vocab_size=self.type_vocab_size,
          initializer_range=self.initializer_range)

      model = modeling.BertModel(
          config=config,
          is_training=self.is_training,
          input_ids=input_ids,
          input_mask=input_mask,
          token_type_ids=token_type_ids,
          scope=self.scope)

      outputs = {
          "embedding_output": model.get_embedding_output(),
          "sequence_output": model.get_sequence_output(),
          "pooled_output": model.get_pooled_output(),
          "all_encoder_layers": model.get_all_encoder_layers(),
      }
      return outputs 
開發者ID:Nagakiran1,項目名稱:Extending-Google-BERT-as-Question-and-Answering-model-and-Chatbot,代碼行數:44,代碼來源:modeling_test.py

示例14: model_fn_builder

# 需要導入模塊: import modeling [as 別名]
# 或者: from modeling import BertModel [as 別名]
def model_fn_builder(bert_config, init_checkpoint, layer_indexes, use_tpu,
                     use_one_hot_embeddings):
  """Returns `model_fn` closure for TPUEstimator."""

  def model_fn(features, labels, mode, params):  # pylint: disable=unused-argument
    """The `model_fn` for TPUEstimator."""

    unique_ids = features["unique_ids"]
    input_ids = features["input_ids"]
    input_mask = features["input_mask"]
    input_type_ids = features["input_type_ids"]

    model = modeling.BertModel(
        config=bert_config,
        is_training=False,
        input_ids=input_ids,
        input_mask=input_mask,
        token_type_ids=input_type_ids,
        use_one_hot_embeddings=use_one_hot_embeddings)

    if mode != tf.estimator.ModeKeys.PREDICT:
      raise ValueError("Only PREDICT modes are supported: %s" % (mode))

    tvars = tf.trainable_variables()
    scaffold_fn = None
    (assignment_map,
     initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(
         tvars, init_checkpoint)
    if use_tpu:

      def tpu_scaffold():
        tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
        return tf.train.Scaffold()

      scaffold_fn = tpu_scaffold
    else:
      tf.train.init_from_checkpoint(init_checkpoint, assignment_map)

    tf.logging.info("**** Trainable Variables ****")
    for var in tvars:
      init_string = ""
      if var.name in initialized_variable_names:
        init_string = ", *INIT_FROM_CKPT*"
      tf.logging.info("  name = %s, shape = %s%s", var.name, var.shape,
                      init_string)

    all_layers = model.get_all_encoder_layers()

    predictions = {
        "unique_id": unique_ids,
    }

    for (i, layer_index) in enumerate(layer_indexes):
      predictions["layer_output_%d" % i] = all_layers[layer_index]

    output_spec = tf.contrib.tpu.TPUEstimatorSpec(
        mode=mode, predictions=predictions, scaffold_fn=scaffold_fn)
    return output_spec

  return model_fn 
開發者ID:Nagakiran1,項目名稱:Extending-Google-BERT-as-Question-and-Answering-model-and-Chatbot,代碼行數:62,代碼來源:extract_features.py

示例15: create_model

# 需要導入模塊: import modeling [as 別名]
# 或者: from modeling import BertModel [as 別名]
def create_model(bert_config, is_training, input_ids, input_mask, segment_ids,
                 labels, num_labels, use_one_hot_embeddings):
  """Creates a classification model."""
  model = modeling.BertModel(
      config=bert_config,
      is_training=is_training,
      input_ids=input_ids,
      input_mask=input_mask,
      token_type_ids=segment_ids,
      use_one_hot_embeddings=use_one_hot_embeddings)

  # In the demo, we are doing a simple classification task on the entire
  # segment.
  #
  # If you want to use the token-level output, use model.get_sequence_output()
  # instead.
  output_layer = model.get_pooled_output()

  hidden_size = output_layer.shape[-1].value

  output_weights = tf.get_variable(
      "output_weights", [num_labels, hidden_size],
      initializer=tf.truncated_normal_initializer(stddev=0.02))

  output_bias = tf.get_variable(
      "output_bias", [num_labels], initializer=tf.zeros_initializer())

  with tf.variable_scope("loss"):
    if is_training:
      # I.e., 0.1 dropout
      output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)

    logits = tf.matmul(output_layer, output_weights, transpose_b=True)
    logits = tf.nn.bias_add(logits, output_bias)
    probabilities = tf.nn.softmax(logits, axis=-1)
    log_probs = tf.nn.log_softmax(logits, axis=-1)

    one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)

    per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
    loss = tf.reduce_mean(per_example_loss)

    return (loss, per_example_loss, logits, probabilities) 
開發者ID:Nagakiran1,項目名稱:Extending-Google-BERT-as-Question-and-Answering-model-and-Chatbot,代碼行數:45,代碼來源:run_classifier.py


注:本文中的modeling.BertModel方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。