當前位置: 首頁>>代碼示例>>Python>>正文


Python model.train方法代碼示例

本文整理匯總了Python中model.train方法的典型用法代碼示例。如果您正苦於以下問題:Python model.train方法的具體用法?Python model.train怎麽用?Python model.train使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在model的用法示例。


在下文中一共展示了model.train方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: evaluate

# 需要導入模塊: import model [as 別名]
# 或者: from model import train [as 別名]
def evaluate(data_source, source_sampler, target_sampler, batch_size=10):
    # Turn on evaluation mode which disables dropout.
    model.eval()
    if args.model == 'QRNN':
        model.reset()
    total_loss = 0
    hidden = model.init_hidden(batch_size)

    for source_sample, target_sample in zip(source_sampler, target_sampler):
        model.train()
        data = torch.stack([data_source[i] for i in source_sample])
        targets = torch.stack([data_source[i] for i in target_sample]).view(-1)
        with torch.no_grad():
            output, hidden = model(data, hidden)
        total_loss += len(data) * criterion(model.decoder.weight, model.decoder.bias, output,
                                            targets).item()
        hidden = repackage_hidden(hidden)
    return total_loss / len(data_source) 
開發者ID:PetrochukM,項目名稱:PyTorch-NLP,代碼行數:20,代碼來源:main.py

示例2: train

# 需要導入模塊: import model [as 別名]
# 或者: from model import train [as 別名]
def train(i):
    model.train()
    total_loss = 0
    for chars, words, position, sub_sidx, sub_eidx, obj_sidx, obj_eidx, sub_slidx, sub_elidx in tqdm(training_data, mininterval=1, desc='Train Processing', leave=False):
        optimizer.zero_grad()
        p_sub_sidx, p_sub_eidx, p_obj_sidx, p_obj_eidx, mask = model(
            chars, words, position, sub_slidx, sub_elidx)

        ss_loss = mask_binary_cross_entropy(p_sub_sidx, sub_sidx, mask)
        se_loss = mask_binary_cross_entropy(p_sub_eidx, sub_eidx, mask)
        os_loss = mask_binary_cross_entropy(p_obj_sidx, obj_sidx, mask)
        oe_loss = mask_binary_cross_entropy(p_obj_eidx, obj_eidx, mask)

        loss = ss_loss+se_loss+os_loss+oe_loss
        loss.backward()

        optimizer.step()
        optimizer.update_learning_rate()
        total_loss += loss.data.item()

    print(
        f"train epoch {i+1}/{args.epochs} loss: {total_loss/training_data.stop_step:.4f}") 
開發者ID:ne7ermore,項目名稱:torch-light,代碼行數:24,代碼來源:train.py

示例3: save_model

# 需要導入模塊: import model [as 別名]
# 或者: from model import train [as 別名]
def save_model(model, sess, log_path, step):
  """
  Save model using tensorflow checkpoint (also save hidden variables)
  
  Args:
    model            :         model to save variable from
    sess             :         tensorflow session
    log_path         :         where to save
    step             :         number of step at time of saving
  """
 
  path = log_path + '/' + model.name
  if tf.gfile.Exists(path):
    tf.gfile.DeleteRecursively(path)
  tf.gfile.MakeDirs(path)
  saver = tf.train.Saver()
  checkpoint_path = os.path.join(path, 'model.ckpt')
  saver.save(sess, checkpoint_path, global_step=step) 
開發者ID:arthurmeyer,項目名稱:Saliency_Detection_Convolutional_Autoencoder,代碼行數:20,代碼來源:operations.py

示例4: restore_model

# 需要導入模塊: import model [as 別名]
# 或者: from model import train [as 別名]
def restore_model(model, sess, log_path):
  """
  Restore model (including hidden variable)
  In practice use to resume the training of the same model
  
  Args
    model            :         model to restore variable to
    sess             :         tensorflow session
    log_path         :         where to save
    
  Returns:
    step_b           :         the step number at which training ended
  """
    
  path = log_path + '/' + model.name  
  saver = tf.train.Saver()
  ckpt = tf.train.get_checkpoint_state(path)
  if ckpt and ckpt.model_checkpoint_path:
    saver.restore(sess, ckpt.model_checkpoint_path)
    return ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
  else:
    print('------------------------------------------------------')
    print('No checkpoint file found')
    print('------------------------------------------------------ \n')
    exit() 
開發者ID:arthurmeyer,項目名稱:Saliency_Detection_Convolutional_Autoencoder,代碼行數:27,代碼來源:operations.py

示例5: main

# 需要導入模塊: import model [as 別名]
# 或者: from model import train [as 別名]
def main(split_name, checkpoint_dir, cycle_lambda, rec_lambda,
         lsgan_lambda_a, lsgan_lambda_b, num_separate_layers_g,
         num_separate_layers_d, num_no_skip_layers,
         lr_g_mult, lr_d_mult, network_structure):
    """The main function."""
    params = dict()
    params['cycle_lambda'] = cycle_lambda
    params['rec_lambda'] = rec_lambda
    params['lsgan_lambda_a'] = lsgan_lambda_a
    params['lsgan_lambda_b'] = lsgan_lambda_b
    params['num_separate_layers_g'] = num_separate_layers_g
    params['num_separate_layers_d'] = num_separate_layers_d
    params['num_no_skip_layers'] = num_no_skip_layers
    params['lr_g_mult'] = lr_g_mult
    params['lr_d_mult'] = lr_d_mult

    model = Img2Img(split_name, params, base_lr=.0002, max_step=200,
                    checkpoint_dir='',
                    network_structure=network_structure)

    model.train() 
開發者ID:leehomyc,項目名稱:Img2Img-Translation-Networks,代碼行數:23,代碼來源:main.py

示例6: main

# 需要導入模塊: import model [as 別名]
# 或者: from model import train [as 別名]
def main(hps):

    # Initialize Horovod.
    hvd.init()

    # Create tensorflow session
    sess = tensorflow_session()

    # Download and load dataset.
    tf.set_random_seed(hvd.rank() + hvd.size() * hps.seed)
    np.random.seed(hvd.rank() + hvd.size() * hps.seed)

    # Get data and set train_its and valid_its
    train_iterator, test_iterator, data_init = get_data(hps, sess)
    hps.train_its, hps.test_its, hps.full_test_its = get_its(hps)

    # Create log dir
    logdir = os.path.abspath(hps.logdir) + "/"
    if not os.path.exists(logdir):
        os.mkdir(logdir)

    # Create model
    import model
    model = model.model(sess, hps, train_iterator, test_iterator, data_init)

    # Initialize visualization functions
    visualise = init_visualizations(hps, model, logdir)

    if not hps.inference:
        # Perform training
        train(sess, model, hps, logdir, visualise)
    else:
        infer(sess, model, hps, test_iterator) 
開發者ID:openai,項目名稱:glow,代碼行數:35,代碼來源:train.py

示例7: train

# 需要導入模塊: import model [as 別名]
# 或者: from model import train [as 別名]
def train():
    # Turn on training mode which enables dropout.
    model.train()
    total_loss = 0
    start_time = time.time()
    ntokens = len(corpus.dictionary)
    hidden = model.init_hidden(args.batch_size)
    for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
        data, targets = get_batch(train_data, i)
        # Starting each batch, we detach the hidden state from how it was previously produced.
        # If we didn't, the model would try backpropagating all the way to start of the dataset.
        hidden = repackage_hidden(hidden)
        model.zero_grad()
        output, hidden = model(data, hidden)
        loss = criterion(output.view(-1, ntokens), targets)
        loss.backward()

        # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
        torch.nn.utils.clip_grad_norm(model.parameters(), args.clip)
        for p in model.parameters():
            p.data.add_(-lr, p.grad.data)

        total_loss += loss.data

        if batch % args.log_interval == 0 and batch > 0:
            cur_loss = total_loss[0] / args.log_interval
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
                  'loss {:5.2f} | ppl {:8.2f}'.format(
                epoch, batch, len(train_data) // args.bptt, lr,
                              elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
            total_loss = 0
            start_time = time.time()


# Loop over epochs. 
開發者ID:jiacheng-xu,項目名稱:vmf_vae_nlp,代碼行數:38,代碼來源:main.py

示例8: grad

# 需要導入模塊: import model [as 別名]
# 或者: from model import train [as 別名]
def grad(model, inputs, pred, classes):
    losses1 = torch.zeros(inputs.size()[0],inputs.size()[1])
    dloss = torch.zeros(inputs.size()[0],inputs.size()[1])
    if isinstance(model,torch.nn.DataParallel):
        model = model.module
    model.train()
    embd,output = model(inputs, returnembd = True)
    # embd.retain_grad()
    loss = F.nll_loss(output,pred)

    loss.backward()
    score = (inputs<=2).float()
    score = -score
    score = embd.grad.norm(2,dim=2) + score * 1e9
    return score 
開發者ID:QData,項目名稱:deepWordBug,代碼行數:17,代碼來源:scoring.py

示例9: grad_unconstrained

# 需要導入模塊: import model [as 別名]
# 或者: from model import train [as 別名]
def grad_unconstrained(model, inputs, pred, classes):
    losses1 = torch.zeros(inputs.size()[0],inputs.size()[1])
    dloss = torch.zeros(inputs.size()[0],inputs.size()[1])
    if isinstance(model,torch.nn.DataParallel):
        model = model.module
    model.train()
    embd,output = model(inputs, returnembd = True)
    loss = F.nll_loss(output,pred)

    loss.backward()
    score = embd.grad.norm(2,dim=2)
    return score 
開發者ID:QData,項目名稱:deepWordBug,代碼行數:14,代碼來源:scoring.py

示例10: main

# 需要導入模塊: import model [as 別名]
# 或者: from model import train [as 別名]
def main():
    if args.mode == 'train':
        print(args.path)
        train(args.path)
    if args.mode == 'test':
        test(args.path, args.weight) 
開發者ID:MrPhD,項目名稱:HairNet,代碼行數:8,代碼來源:main.py

示例11: train

# 需要導入模塊: import model [as 別名]
# 或者: from model import train [as 別名]
def train():
    # Turn on training mode which enables dropout.
    model.train()
    total_loss = 0.
    start_time = time.time()
    ntokens = len(corpus.dictionary)
    hidden = model.init_hidden(args.batch_size)
    for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
        data, targets = get_batch(train_data, i)
        # Starting each batch, we detach the hidden state from how it was previously produced.
        # If we didn't, the model would try backpropagating all the way to start of the dataset.
        hidden = repackage_hidden(hidden)
        optimizer.zero_grad()
        output, hidden = model(data, hidden)
        loss = criterion(output.view(-1, ntokens), targets)
        loss.backward()

        # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
        torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
        optimizer.step()

        total_loss += loss.item()

        if batch % args.log_interval == 0 and batch > 0:
            cur_loss = total_loss / args.log_interval
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
                    'loss {:5.2f} | ppl {:8.2f}'.format(
                epoch, batch, len(train_data) // args.bptt, lr,
                elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
            sys.stdout.flush()
            total_loss = 0
            start_time = time.time() 
開發者ID:rdspring1,項目名稱:Count-Sketch-Optimizers,代碼行數:35,代碼來源:main.py

示例12: train

# 需要導入模塊: import model [as 別名]
# 或者: from model import train [as 別名]
def train():
    # Turn on training mode which enables dropout.
    model.train()
    total_loss = 0.
    start_time = time.time()
    ntokens = len(corpus.dictionary)
    if args.model != 'Transformer':
        hidden = model.init_hidden(args.batch_size)
    for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
        data, targets = get_batch(train_data, i)
        # Starting each batch, we detach the hidden state from how it was previously produced.
        # If we didn't, the model would try backpropagating all the way to start of the dataset.
        model.zero_grad()
        if args.model == 'Transformer':
            output = model(data)
            output = output.view(-1, ntokens)
        else:
            hidden = repackage_hidden(hidden)
            output, hidden = model(data, hidden)
        loss = criterion(output, targets)
        loss.backward()

        # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
        torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
        for p in model.parameters():
            p.data.add_(-lr, p.grad)

        total_loss += loss.item()

        if batch % args.log_interval == 0 and batch > 0:
            cur_loss = total_loss / args.log_interval
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
                    'loss {:5.2f} | ppl {:8.2f}'.format(
                epoch, batch, len(train_data) // args.bptt, lr,
                elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
            total_loss = 0
            start_time = time.time()
        if args.dry_run:
            break 
開發者ID:pytorch,項目名稱:examples,代碼行數:42,代碼來源:main.py

示例13: train

# 需要導入模塊: import model [as 別名]
# 或者: from model import train [as 別名]
def train():
    # Turn on training mode which enables dropout.
    model.train()
    total_loss = 0.
    start_time = time.time()
    ntokens = len(corpus.dictionary)
    if args.model != 'Transformer':
        hidden = model.init_hidden(args.batch_size)
    for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
        data, targets = get_batch(train_data, i)
        # Starting each batch, we detach the hidden state from how it was previously produced.
        # If we didn't, the model would try backpropagating all the way to start of the dataset.
        model.zero_grad()
        if args.model == 'Transformer':
            output = model(data)
        else:
            hidden = repackage_hidden(hidden)
            output, hidden = model(data, hidden)
        loss = criterion(output.view(-1, ntokens), targets)
        loss.backward()

        # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
        torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
        for p in model.parameters():
            p.data.add_(-lr, p.grad.data)

        total_loss += loss.item()

        if batch % args.log_interval == 0 and batch > 0:
            cur_loss = total_loss / args.log_interval
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
                    'loss {:5.2f} | ppl {:8.2f}'.format(
                epoch, batch, len(train_data) // args.bptt, lr,
                elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
            total_loss = 0
            start_time = time.time() 
開發者ID:Lornatang,項目名稱:PyTorch,代碼行數:39,代碼來源:main.py

示例14: train

# 需要導入模塊: import model [as 別名]
# 或者: from model import train [as 別名]
def train():
    # Turn on training mode which enables dropout.
    model.train()
    total_loss = 0
    start_time = time.time()
    ntokens = len(corpus.dictionary)
    hidden = model.init_hidden(args.batch_size)
    for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
        data, targets = get_batch(train_data, i)
        # Starting each batch, we detach the hidden state from how it was previously produced.
        # If we didn't, the model would try backpropagating all the way to start of the dataset.
        hidden = repackage_hidden(hidden)
        model.zero_grad()
        output, hidden = model(data, hidden)
        loss = criterion(output.view(-1, ntokens), targets)
        loss.backward()

        # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
        torch.nn.utils.clip_grad_norm(model.parameters(), args.clip)
        for p in model.parameters():
            p.data.add_(-lr, p.grad.data)

        total_loss += loss.data

        if batch % args.log_interval == 0 and batch > 0:
            cur_loss = total_loss[0] / args.log_interval
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
                    'loss {:5.2f} | ppl {:8.2f}'.format(
                epoch, batch, len(train_data) // args.bptt, lr,
                elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
            total_loss = 0
            start_time = time.time()

# Loop over epochs. 
開發者ID:floydhub,項目名稱:word-language-model,代碼行數:37,代碼來源:main.py

示例15: save_weight_only

# 需要導入模塊: import model [as 別名]
# 或者: from model import train [as 別名]
def save_weight_only(model, sess, log_path, step):
  """
  Save model but only weight (meaning no hidden variable)
  In practice use this to just transfer weights from one model to the other
  
  Args:
    model            :         model to save variable from
    sess             :         tensorflow session
    log_path         :         where to save
    step             :         number of step at time of saving
  """

  path = log_path + '/' + model.name + '_weight_only'
  if tf.gfile.Exists(path):
    tf.gfile.DeleteRecursively(path)
  tf.gfile.MakeDirs(path)
  
  variable_to_save = {}
  for i in range(30):
    name = 'conv_' + str(i)
    variable_to_save[name] = model.parameters_conv[i]
    if i in [2, 4] and model.concat:
      name = 'deconv_' + str(i)
      variable_to_save[name] = model.parameters_deconv[i][0]
      name = 'deconv_' + str(i) + '_bis'
      variable_to_save[name] = model.parameters_deconv[i][1]
    else:
      name = 'deconv_' + str(i)
      variable_to_save[name] = model.parameters_deconv[i]
    if i < 2:
      name = 'deconv_bis_' + str(i)
      variable_to_save[name] = model.deconv[i]
  saver = tf.train.Saver(variable_to_save)
  checkpoint_path = os.path.join(path, 'model.ckpt')
  saver.save(sess, checkpoint_path, global_step=step) 
開發者ID:arthurmeyer,項目名稱:Saliency_Detection_Convolutional_Autoencoder,代碼行數:37,代碼來源:operations.py


注:本文中的model.train方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。