當前位置: 首頁>>代碼示例>>Python>>正文


Python model.parameters方法代碼示例

本文整理匯總了Python中model.parameters方法的典型用法代碼示例。如果您正苦於以下問題:Python model.parameters方法的具體用法?Python model.parameters怎麽用?Python model.parameters使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在model的用法示例。


在下文中一共展示了model.parameters方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: train

# 需要導入模塊: import model [as 別名]
# 或者: from model import parameters [as 別名]
def train():
    # Turn on training mode which enables dropout.
    model.train()
    total_loss = 0
    start_time = time.time()
    ntokens = len(corpus.dictionary)
    hidden = model.init_hidden(args.batch_size)
    for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
        data, targets = get_batch(train_data, i)
        # Starting each batch, we detach the hidden state from how it was previously produced.
        # If we didn't, the model would try backpropagating all the way to start of the dataset.
        hidden = repackage_hidden(hidden)
        model.zero_grad()
        output, hidden = model(data, hidden)
        loss = criterion(output.view(-1, ntokens), targets)
        loss.backward()

        # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
        torch.nn.utils.clip_grad_norm(model.parameters(), args.clip)
        for p in model.parameters():
            p.data.add_(-lr, p.grad.data)

        total_loss += loss.data

        if batch % args.log_interval == 0 and batch > 0:
            cur_loss = total_loss[0] / args.log_interval
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
                  'loss {:5.2f} | ppl {:8.2f}'.format(
                epoch, batch, len(train_data) // args.bptt, lr,
                              elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
            total_loss = 0
            start_time = time.time()


# Loop over epochs. 
開發者ID:jiacheng-xu,項目名稱:vmf_vae_nlp,代碼行數:38,代碼來源:main.py

示例2: train

# 需要導入模塊: import model [as 別名]
# 或者: from model import parameters [as 別名]
def train():
    # Turn on training mode which enables dropout.
    model.train()
    total_loss = 0.
    start_time = time.time()
    ntokens = len(corpus.dictionary)
    hidden = model.init_hidden(args.batch_size)
    for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
        data, targets = get_batch(train_data, i)
        # Starting each batch, we detach the hidden state from how it was previously produced.
        # If we didn't, the model would try backpropagating all the way to start of the dataset.
        hidden = repackage_hidden(hidden)
        optimizer.zero_grad()
        output, hidden = model(data, hidden)
        loss = criterion(output.view(-1, ntokens), targets)
        loss.backward()

        # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
        torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
        optimizer.step()

        total_loss += loss.item()

        if batch % args.log_interval == 0 and batch > 0:
            cur_loss = total_loss / args.log_interval
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
                    'loss {:5.2f} | ppl {:8.2f}'.format(
                epoch, batch, len(train_data) // args.bptt, lr,
                elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
            sys.stdout.flush()
            total_loss = 0
            start_time = time.time() 
開發者ID:rdspring1,項目名稱:Count-Sketch-Optimizers,代碼行數:35,代碼來源:main.py

示例3: train

# 需要導入模塊: import model [as 別名]
# 或者: from model import parameters [as 別名]
def train():
    # Turn on training mode which enables dropout.
    model.train()
    total_loss = 0.
    start_time = time.time()
    ntokens = len(corpus.dictionary)
    if args.model != 'Transformer':
        hidden = model.init_hidden(args.batch_size)
    for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
        data, targets = get_batch(train_data, i)
        # Starting each batch, we detach the hidden state from how it was previously produced.
        # If we didn't, the model would try backpropagating all the way to start of the dataset.
        model.zero_grad()
        if args.model == 'Transformer':
            output = model(data)
            output = output.view(-1, ntokens)
        else:
            hidden = repackage_hidden(hidden)
            output, hidden = model(data, hidden)
        loss = criterion(output, targets)
        loss.backward()

        # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
        torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
        for p in model.parameters():
            p.data.add_(-lr, p.grad)

        total_loss += loss.item()

        if batch % args.log_interval == 0 and batch > 0:
            cur_loss = total_loss / args.log_interval
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
                    'loss {:5.2f} | ppl {:8.2f}'.format(
                epoch, batch, len(train_data) // args.bptt, lr,
                elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
            total_loss = 0
            start_time = time.time()
        if args.dry_run:
            break 
開發者ID:pytorch,項目名稱:examples,代碼行數:42,代碼來源:main.py

示例4: train

# 需要導入模塊: import model [as 別名]
# 或者: from model import parameters [as 別名]
def train():
    # Turn on training mode which enables dropout.
    model.train()
    total_loss = 0.
    start_time = time.time()
    ntokens = len(corpus.dictionary)
    if args.model != 'Transformer':
        hidden = model.init_hidden(args.batch_size)
    for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
        data, targets = get_batch(train_data, i)
        # Starting each batch, we detach the hidden state from how it was previously produced.
        # If we didn't, the model would try backpropagating all the way to start of the dataset.
        model.zero_grad()
        if args.model == 'Transformer':
            output = model(data)
        else:
            hidden = repackage_hidden(hidden)
            output, hidden = model(data, hidden)
        loss = criterion(output.view(-1, ntokens), targets)
        loss.backward()

        # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
        torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
        for p in model.parameters():
            p.data.add_(-lr, p.grad.data)

        total_loss += loss.item()

        if batch % args.log_interval == 0 and batch > 0:
            cur_loss = total_loss / args.log_interval
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
                    'loss {:5.2f} | ppl {:8.2f}'.format(
                epoch, batch, len(train_data) // args.bptt, lr,
                elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
            total_loss = 0
            start_time = time.time() 
開發者ID:Lornatang,項目名稱:PyTorch,代碼行數:39,代碼來源:main.py

示例5: train

# 需要導入模塊: import model [as 別名]
# 或者: from model import parameters [as 別名]
def train():
    # Turn on training mode which enables dropout.
    model.train()
    total_loss = 0
    start_time = time.time()
    ntokens = len(corpus.dictionary)
    hidden = model.init_hidden(args.batch_size)
    for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
        data, targets = get_batch(train_data, i)
        # Starting each batch, we detach the hidden state from how it was previously produced.
        # If we didn't, the model would try backpropagating all the way to start of the dataset.
        hidden = repackage_hidden(hidden)
        model.zero_grad()
        output, hidden = model(data, hidden)
        loss = criterion(output.view(-1, ntokens), targets)
        loss.backward()

        # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
        torch.nn.utils.clip_grad_norm(model.parameters(), args.clip)
        for p in model.parameters():
            p.data.add_(-lr, p.grad.data)

        total_loss += loss.data

        if batch % args.log_interval == 0 and batch > 0:
            cur_loss = total_loss[0] / args.log_interval
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
                    'loss {:5.2f} | ppl {:8.2f}'.format(
                epoch, batch, len(train_data) // args.bptt, lr,
                elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
            total_loss = 0
            start_time = time.time()

# Loop over epochs. 
開發者ID:floydhub,項目名稱:word-language-model,代碼行數:37,代碼來源:main.py

示例6: train

# 需要導入模塊: import model [as 別名]
# 或者: from model import parameters [as 別名]
def train():
    # Turn on training mode which enables dropout.
    model.train()
    total_loss = 0
    start_time = time.time()
    ntokens = len(corpus.dictionary)
    hidden = model.init_hidden(args.batch_size)
    for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
        data, targets = get_batch(train_data, i)
        # Starting each batch, we detach the hidden state from how it was previously produced.
        # If we didn't, the model would try backpropagating all the way to start of the dataset.
        hidden = repackage_hidden(hidden)
        optimizer.zero_grad()
        with dni.defer_backward():
            output, hidden = model(data, hidden)
            loss = criterion(output.view(-1, ntokens), targets)
            dni.backward(loss)

        # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
        torch.nn.utils.clip_grad_norm(model.parameters(), args.clip)
        optimizer.step()

        total_loss += loss.data

        if batch % args.log_interval == 0 and batch > 0:
            cur_loss = total_loss[0] / args.log_interval
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
                    'loss {:5.2f} | ppl {:8.2f}'.format(
                epoch, batch, len(train_data) // args.bptt, lr,
                elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
            total_loss = 0
            start_time = time.time()

# Loop over epochs. 
開發者ID:koz4k,項目名稱:dni-pytorch,代碼行數:37,代碼來源:main.py

示例7: train

# 需要導入模塊: import model [as 別名]
# 或者: from model import parameters [as 別名]
def train():
    # Turn on training mode which enables dropout.
    if args.model == 'QRNN': model.reset()
    total_loss = 0
    start_time = time.time()
    ntokens = len(corpus.dictionary)
    hidden = model.init_hidden(args.batch_size)
    batch, i = 0, 0
    while i < train_data.size(0) - 1 - 1:
        bptt = args.bptt if np.random.random() < 0.95 else args.bptt / 2.
        # Prevent excessively small or negative sequence lengths
        seq_len = max(5, int(np.random.normal(bptt, 5)))
        # There's a very small chance that it could select a very long sequence length resulting in OOM
        seq_len = min(seq_len, args.bptt + 10)

        lr2 = optimizer.param_groups[0]['lr']
        optimizer.param_groups[0]['lr'] = lr2 * seq_len / args.bptt
        model.train()
        data, targets = get_batch(train_data, i, args, seq_len=seq_len)

        # Starting each batch, we detach the hidden state from how it was previously produced.
        # If we didn't, the model would try backpropagating all the way to start of the dataset.
        hidden = repackage_hidden(hidden)
        optimizer.zero_grad()

        output, hidden, rnn_hs, dropped_rnn_hs = model(data, hidden, return_h=True)
        raw_loss = criterion(output.view(-1, ntokens), targets)

        loss = raw_loss
        # Activiation Regularization
        loss = loss + sum(args.alpha * dropped_rnn_h.pow(2).mean() for dropped_rnn_h in dropped_rnn_hs[-1:])
        # Temporal Activation Regularization (slowness)
        loss = loss + sum(args.beta * (rnn_h[1:] - rnn_h[:-1]).pow(2).mean() for rnn_h in rnn_hs[-1:])
        loss.backward()

        # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
        torch.nn.utils.clip_grad_norm(model.parameters(), args.clip)
        optimizer.step()

        total_loss += raw_loss.data
        optimizer.param_groups[0]['lr'] = lr2
        if batch % args.log_interval == 0 and batch > 0:
            cur_loss = total_loss[0] / args.log_interval
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
                    'loss {:5.2f} | ppl {:8.2f}'.format(
                epoch, batch, len(train_data) // args.bptt, optimizer.param_groups[0]['lr'],
                elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
            total_loss = 0
            start_time = time.time()
        ###
        batch += 1
        i += seq_len


# Load the best saved model. 
開發者ID:urvashik,項目名稱:lm-context-analysis,代碼行數:58,代碼來源:finetune.py

示例8: train

# 需要導入模塊: import model [as 別名]
# 或者: from model import parameters [as 別名]
def train():
    # Turn on training mode which enables dropout.
    if args.model == 'QRNN': model.reset()
    total_loss = 0
    start_time = time.time()
    ntokens = len(corpus.dictionary)
    hidden = model.init_hidden(args.batch_size)
    batch, i = 0, 0
    while i < train_data.size(0) - 1 - 1:
        bptt = args.bptt if np.random.random() < 0.95 else args.bptt / 2.
        # Prevent excessively small or negative sequence lengths
        seq_len = max(5, int(np.random.normal(bptt, 5)))
        # There's a very small chance that it could select a very long sequence length resulting in OOM
        # seq_len = min(seq_len, args.bptt + 10)

        lr2 = optimizer.param_groups[0]['lr']
        optimizer.param_groups[0]['lr'] = lr2 * seq_len / args.bptt
        model.train()
        data, targets = get_batch(train_data, i, args, seq_len=seq_len)

        # Starting each batch, we detach the hidden state from how it was previously produced.
        # If we didn't, the model would try backpropagating all the way to start of the dataset.
        hidden = repackage_hidden(hidden)
        optimizer.zero_grad()

        output, hidden, rnn_hs, dropped_rnn_hs = model(data, hidden, return_h=True)
        raw_loss = criterion(output.view(-1, ntokens), targets)

        loss = raw_loss
        # Activiation Regularization
        loss = loss + sum(args.alpha * dropped_rnn_h.pow(2).mean() for dropped_rnn_h in dropped_rnn_hs[-1:])
        # Temporal Activation Regularization (slowness)
        loss = loss + sum(args.beta * (rnn_h[1:] - rnn_h[:-1]).pow(2).mean() for rnn_h in rnn_hs[-1:])
        loss.backward()

        # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
        torch.nn.utils.clip_grad_norm(model.parameters(), args.clip)
        optimizer.step()

        total_loss += raw_loss.data
        optimizer.param_groups[0]['lr'] = lr2
        if batch % args.log_interval == 0 and batch > 0:
            cur_loss = total_loss[0] / args.log_interval
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
                    'loss {:5.2f} | ppl {:8.2f}'.format(
                epoch, batch, len(train_data) // args.bptt, optimizer.param_groups[0]['lr'],
                elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
            total_loss = 0
            start_time = time.time()
        ###
        batch += 1
        i += seq_len

# Loop over epochs. 
開發者ID:urvashik,項目名稱:lm-context-analysis,代碼行數:57,代碼來源:main.py

示例9: train

# 需要導入模塊: import model [as 別名]
# 或者: from model import parameters [as 別名]
def train():
    global lr, best_val_loss
    # Turn on training mode which enables dropout.
    model.train()
    total_loss, nbatches = 0, 0
    start_time = time.time()
    ntokens = len(corpus.dictionary.idx2word)
    hidden = model.init_hidden(args.batch_size)
    for b, batch in enumerate(corpus.iter('train', args.batch_size, args.bptt, use_cuda=args.cuda)):
        model.train()
        source, target = batch
        # Starting each batch, we detach the hidden state from how it was previously produced.
        # If we didn't, the model would try backpropagating all the way to start of the dataset.
        hidden = repackage_hidden(hidden)
        model.zero_grad()
        model.softmax.set_target(target.data.view(-1))
        output, hidden = model(source, hidden)
        loss = criterion(output, target.view(-1))
        loss.backward()


        # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs.
        torch.nn.utils.clip_grad_norm(model.parameters(), args.clip)
        for p in model.parameters():
            if p.grad is not None:
                p.data.add_(-lr, p.grad.data)

        total_loss += loss.data.cpu()

        if b % args.log_interval == 0 and b > 0:
            cur_loss = total_loss[0] / args.log_interval
            elapsed = time.time() - start_time
            val_loss = evaluate('valid')
            print('| epoch {:3d} | batch {:5d} | lr {:02.5f} | ms/batch {:5.2f} | '
                    'loss {:5.2f} | ppl {:8.2f} | valid loss {:5.2f} | valid ppl {:8.2f}'.format(
                epoch, b, lr,
                elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss),
                val_loss, math.exp(val_loss)))

            # Save the model if the validation loss is the best we've seen so far.
            if not best_val_loss or val_loss < best_val_loss:
                with open(args.save, 'wb') as f:
                    torch.save(model, f)
                best_val_loss = val_loss
            else:
                # Anneal the learning rate if no improvement has been seen in the validation dataset.
                lr *= args.ar

            total_loss = 0
            start_time = time.time()



# At any point you can hit Ctrl + C to break out of training early. 
開發者ID:ari-holtzman,項目名稱:l2w,代碼行數:56,代碼來源:train.py

示例10: train

# 需要導入模塊: import model [as 別名]
# 或者: from model import parameters [as 別名]
def train():
    # Turn on training mode which enables dropout.
    model.train()
    total_loss = 0
    start_time = time.time()
    ntokens = len(corpus.dictionary)
    if (not args.single) and (torch.cuda.device_count() > 1):
        # "module" is necessary when using DataParallel
        hidden = model.module.init_hidden(args.batch_size)
    else:
        hidden = model.init_hidden(args.batch_size)
    # UNCOMMENT FOR DEBUGGING
    #random.seed(10)
    order = list(enumerate(range(0, train_lm_data.size(0) + train_ccg_data.size(0) - 1, args.bptt)))
    random.shuffle(order)
    for batch, i in order:#enumerate(range(0, train_lm_data.size(0) + train_ccg_data.size(0) - 1, args.bptt)):
        # TAG
        if i > train_lm_data.size(0):
            data, targets = get_batch(train_ccg_data, i - train_lm_data.size(0))
        # LM
        else:
            data, targets = get_batch(train_lm_data, i)
            
        # Starting each batch, we detach the hidden state from how it was previously produced.
        # If we didn't, the model would try backpropagating all the way to start of the dataset.
        hidden = repackage_hidden(hidden)
        model.zero_grad()
        output, hidden = model(data, hidden)
        loss = criterion(output.view(-1, ntokens), targets)
        loss.backward()

        # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
        torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
        for p in model.parameters():
            p.data.add_(-lr, p.grad.data)

        total_loss += loss.item()#data

        if batch % args.log_interval == 0 and batch > 0:
            cur_loss = total_loss[0] / args.log_interval
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
                    'loss {:5.2f} | ppl {:8.2f}'.format(
                epoch, batch, len(train_lm_data)+len(train_ccg_data) // args.bptt, lr,
                elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
            total_loss = 0
            start_time = time.time()

# Loop over epochs. 
開發者ID:BeckyMarvin,項目名稱:LM_syneval,代碼行數:51,代碼來源:main.py


注:本文中的model.parameters方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。