本文整理匯總了Python中model.nms.nms_wrapper.nms方法的典型用法代碼示例。如果您正苦於以下問題:Python nms_wrapper.nms方法的具體用法?Python nms_wrapper.nms怎麽用?Python nms_wrapper.nms使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類model.nms.nms_wrapper
的用法示例。
在下文中一共展示了nms_wrapper.nms方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _keep_top_k
# 需要導入模塊: from model.nms import nms_wrapper [as 別名]
# 或者: from model.nms.nms_wrapper import nms [as 別名]
def _keep_top_k(self, boxes, box_inds, end_at, top_k, thresh):
'''Set dynamic class threshold based on average detections per class per frame
(before nms) and keep boxes above this threshold.
'''
box_list = boxes[:end_at].tolist()
box_list = [box for box in box_list if box is not None]
if len(box_list)==0:
return
X = torch.cat(box_list, dim=0)
if X.size(0) == 0:
return
scores,_ = torch.sort(X[:,4], descending=True)
# set threshold for this class
thresh = scores[min(scores.numel(), top_k)]
for image_index in range(end_at):
if boxes[image_index] is not None and boxes[image_index].size(0)>0:
bbox = boxes[image_index]
keep = torch.nonzero(bbox[:,4]>=thresh).view(-1)
if keep.numel()==0:
continue
boxes[image_index] = bbox[keep]
box_inds[image_index] = box_inds[image_index][keep]
return boxes, box_inds, thresh
示例2: apply_nms
# 需要導入模塊: from model.nms import nms_wrapper [as 別名]
# 或者: from model.nms.nms_wrapper import nms [as 別名]
def apply_nms(all_boxes, thresh):
"""Apply non-maximum suppression to all predicted boxes output by the
test_net method.
"""
num_classes = len(all_boxes)
num_images = len(all_boxes[0])
nms_boxes = [[[] for _ in range(num_images)]
for _ in range(num_classes)]
for cls_ind in range(num_classes):
for im_ind in range(num_images):
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
keep = nms(torch.FloatTensor(dets).cuda(), thresh)
if len(keep) == 0:
continue
nms_boxes[cls_ind][im_ind] = dets[keep, :].copy()
return nms_boxes
示例3: __init__
# 需要導入模塊: from model.nms import nms_wrapper [as 別名]
# 或者: from model.nms.nms_wrapper import nms [as 別名]
def __init__(self, pred_boxes, scores, pred_trk_boxes, classes):
print("Starting post-processing.")
self.pred_boxes = pred_boxes
self.scores = scores
self.pred_trk_boxes = pred_trk_boxes
self.num_frames = pred_boxes.size(0)+1
self.num_classes = len(classes)
self.classes = classes
self.top_scores = torch.cuda.FloatTensor(self.num_classes,1).zero_()
#self._aboxes = [[[] for _ in xrange(self.num_frames)] for _ in xrange(self.num_classes)]
self._aboxes = np.ndarray(shape=(self.num_classes, self.num_frames), dtype=np.object)
#self._box_inds = [[[] for _ in xrange(self.num_frames)] for _ in xrange(self.num_classes)]
self._box_inds = np.ndarray(shape=(self.num_classes, self.num_frames), dtype=np.object)
#self._track_boxes = [[[] for _ in xrange(self.num_frames)] for _ in xrange(self.num_classes)]
self._track_boxes = np.ndarray((self.num_classes,self.num_frames), dtype=np.object)
#self._paths = [[] for _ in xrange(self.num_classes)]
self._paths = np.ndarray((self.num_classes,), dtype=np.object)
#self._ascores_track = [[] for _ in xrange(self.num_frames)]
self._ascores_track = np.ndarray(shape=(self.num_frames,), dtype=np.object)
#self._aboxes_track = [[[] for _ in xrange(2)] for _ in xrange(self.num_frames)]
self._aboxes_track = np.ndarray(shape=(self.num_frames, 2), dtype=np.object)
self.CONF_THRESH = torch.cuda.FloatTensor(self.num_classes)
self.CONF_THRESH.fill_(-1*float('Inf'))
self.max_per_image = 400 # keep at most max_per_image dets per class b/4 nms
self.max_per_set = 160*self.num_frames
self.class_agnostic = True
self._process_frame_pairs()
for j in range(1, self.num_classes):
self._aboxes[j], self._box_inds[j], self.CONF_THRESH[j] = \
self._keep_top_k(self._aboxes[j], self._box_inds[j],
self.num_frames, self.max_per_set, self.CONF_THRESH[j])
示例4: _make_tubes
# 需要導入模塊: from model.nms import nms_wrapper [as 別名]
# 或者: from model.nms.nms_wrapper import nms [as 別名]
def _make_tubes(self, frameBoxes, max_per_image, box_voting, tracks_cell):
'''Build tubes for cth class.
'''
tracks = {'boxes': None, 'scores': None, 'c': None}
tracks['boxes'] = tracks_cell[0]
tracks['scores'] = tracks_cell[1]
tracks['c'] = tracks_cell[2]
nms_thresh = 0.3
object_frames_boxes = np.ndarray((len(frameBoxes),), dtype=np.object)
object_frames_scores = np.ndarray((len(frameBoxes),), dtype=np.object)
object_frames_boxes_idx = np.ndarray((len(frameBoxes),), dtype=np.object)
object_frames_trackedboxes = np.ndarray((len(frameBoxes),), dtype=np.object)
# Iterate over the non-empty frames
for f in range(len(frameBoxes)-1):
# boxes in frame f
boxes = frameBoxes[f]
if box_voting: # TODO
raise NotImplementedError
else:
nms_idx = nms(boxes[:, :5].clone(), nms_thresh).long().view(-1)
if nms_idx.numel() > max_per_image:
nms_idx = nms_idx[:max_per_image]
boxes = boxes[nms_idx]
object_frames_boxes[f] = boxes[:, :4]
object_frames_scores[f] = boxes[:, 4]
object_frames_boxes_idx[f] = torch.arange(boxes.size(0)).cuda()
if tracks['boxes'] is not None and tracks['boxes'][f, 0] is not None:
object_frames_trackedboxes[f] = tracks['boxes'][f, :]
paths = self._zero_jump_link(object_frames_boxes, object_frames_scores,
object_frames_boxes_idx, object_frames_trackedboxes)
return paths
示例5: _extract_frames
# 需要導入模塊: from model.nms import nms_wrapper [as 別名]
# 或者: from model.nms.nms_wrapper import nms [as 別名]
def _extract_frames(self, v_path):
'''Extract all fromes from @v_path
:param v_path: full path to video
:return: list of full paths to extracted video frames
'''
print("Extracting frames from {}".format(v_path))
# Store frames in tmp dir by default
tmp_dir = os.path.join('/tmp', os.path.basename(v_path))
# If path exists, delete it
if os.path.isdir(tmp_dir):
shutil.rmtree(tmp_dir)
os.mkdir(tmp_dir)
# create directory to dump output to
save_dir = tmp_dir.replace('.mp4', '') + "_processed"
# clear contents of output directory before saving
if os.path.isdir(save_dir):
shutil.rmtree(save_dir)
print("Saving to {}".format(save_dir))
self._input_dir = tmp_dir
self._output_dir = save_dir
# TODO Make fps configurable at command line
cmd = "ffmpeg -i %s -vf fps=10 %s" % (v_path,os.path.join(tmp_dir,'%09d.png'))
# execute ffmpeg cmd
subprocess.call(cmd,shell=True)
# set frame paths of the current video
self._frame_paths = sorted(glob.glob("%s/*.png" % tmp_dir))
self._n_frames = len(self._frame_paths)
self._max_per_set = 160*self._n_frames # average 160 dets per class per frame before nms
print("Found {} frames".format(self._n_frames))
return
示例6: parse_args
# 需要導入模塊: from model.nms import nms_wrapper [as 別名]
# 或者: from model.nms.nms_wrapper import nms [as 別名]
def parse_args():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(description='Train a Fast R-CNN network')
parser.add_argument('exp_name', type=str, default=None, help='experiment name')
parser.add_argument('--dataset', dest='dataset',
help='training dataset',
default='pascal_voc', type=str)
parser.add_argument('--cfg', dest='cfg_file',
help='optional config file',
default='cfgs/vgg16.yml', type=str)
parser.add_argument('--net', dest='net',
help='detnet59, etc',
default='detnet59', type=str)
parser.add_argument('--set', dest='set_cfgs',
help='set config keys', default=None,
nargs=argparse.REMAINDER)
parser.add_argument('--load_dir', dest='load_dir',
help='directory to load models', default="weights")
parser.add_argument('--image_dir', dest='image_dir',
help='directory to load images', default="demo_images/",
type=str)
parser.add_argument('--result_dir', dest='result_dir', help='directory to save visual result', default="vis_results/",
type=str)
parser.add_argument('--cuda', dest='cuda',
help='whether use CUDA',
action='store_true')
parser.add_argument('--checksession', dest='checksession',
help='checksession to load model',
default=4, type=int)
parser.add_argument('--checkepoch', dest='checkepoch',
help='checkepoch to load network',
default=6, type=int)
parser.add_argument('--checkpoint', dest='checkpoint',
help='checkpoint to load network',
default=10000, type=int)
parser.add_argument('--soft_nms', help='whether use soft nms', action='store_true')
parser.add_argument('--cascade', help='whether use cascade', action='store_true')
parser.add_argument('--cag', dest='class_agnostic',
help='whether perform class_agnostic bbox regression',
action='store_true')
args = parser.parse_args()
return args
示例7: parse_args
# 需要導入模塊: from model.nms import nms_wrapper [as 別名]
# 或者: from model.nms.nms_wrapper import nms [as 別名]
def parse_args():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(description='Train a Fast R-CNN network')
parser.add_argument('exp_name', type=str, default=None, help='experiment name')
parser.add_argument('--dataset', dest='dataset',
help='training dataset',
default='pascal_voc', type=str)
parser.add_argument('--cfg', dest='cfg_file',
help='optional config file',
default='cfgs/vgg16.yml', type=str)
parser.add_argument('--net', dest='net',
help='detnet59, etc',
default='detnet59', type=str)
parser.add_argument('--set', dest='set_cfgs',
help='set config keys', default=None,
nargs=argparse.REMAINDER)
parser.add_argument('--load_dir', dest='load_dir',
help='directory to load models', default="/srv/share/jyang375/models",
type=str)
parser.add_argument('--cuda', dest='cuda',
help='whether use CUDA',
action='store_true')
parser.add_argument('--ls', dest='large_scale',
help='whether use large imag scale',
action='store_true')
parser.add_argument('--mGPUs', dest='mGPUs',
help='whether use multiple GPUs',
action='store_true')
parser.add_argument('--cag', dest='class_agnostic',
help='whether perform class_agnostic bbox regression',
action='store_true')
parser.add_argument('--parallel_type', dest='parallel_type',
help='which part of model to parallel, 0: all, 1: model before roi pooling',
default=0, type=int)
parser.add_argument('--checksession', dest='checksession',
help='checksession to load model',
default=1, type=int)
parser.add_argument('--checkepoch', dest='checkepoch',
help='checkepoch to load network',
default=1, type=int)
parser.add_argument('--checkpoint', dest='checkpoint',
help='checkpoint to load network',
default=10021, type=int)
parser.add_argument('--bs', dest='batch_size',
help='batch_size',
default=1, type=int)
parser.add_argument('--vis', dest='vis',
help='visualization mode',
action='store_true')
parser.add_argument('--soft_nms', help='whether use soft nms', action='store_true')
parser.add_argument('--cascade', help='whether use soft nms', action='store_true')
args = parser.parse_args()
return args
示例8: visualize_without_paths
# 需要導入模塊: from model.nms import nms_wrapper [as 別名]
# 或者: from model.nms.nms_wrapper import nms [as 別名]
def visualize_without_paths(video_dataset, pred_boxes, scores, pred_trk_boxes, det_classes):
print("Visualizing...")
list_im = video_dataset._frame_paths
num_classes = len(det_classes)
num_frames = len(list_im)
try:
font = ImageFont.truetype('arial.ttf', 24)
except IOError:
font = ImageFont.load_default()
for i_frame in range(num_frames-1):
print('frame: {}/{}'.format(i_frame, num_frames))
fig, ax = plt.subplots(figsize=(12, 12))
img_path = list_im[i_frame]
img = cv2.imread(img_path)
img = img[:,:,(2,1,0)]
disp_image = Image.fromarray(np.uint8(img))
for cls_ind in range(1, num_classes):
ax.imshow(disp_image, aspect='equal')
class_name = det_classes[cls_ind]
keep = torch.nonzero(scores[i_frame][0][:, cls_ind]>CONF_THRESH).view(-1)
if keep.numel()==0:
# no detections above threshold for this class
continue
cls_scores = scores[i_frame][0][keep][:, cls_ind]
_, order = torch.sort(cls_scores, 0, True)
cls_boxes = pred_boxes[i_frame][0][keep, :]
cls_dets = torch.cat([cls_boxes, cls_scores.contiguous().view(-1,1)], dim=1)
cls_dets = cls_dets[order]
keep = nms(cls_dets, 0.3)
cls_dets = cls_dets[keep.view(-1).long()]
for ibox in range(cls_dets.size(0)):
bbox = cls_dets[ibox, :4].cpu().numpy().flatten()
score = cls_dets[ibox, 4]
ax.add_patch(
plt.Rectangle((bbox[0], bbox[1]),
bbox[2] - bbox[0],
bbox[3] - bbox[1], fill=False,
edgecolor=COLOR_WHEEL[cls_ind], linewidth=3.5)
)
ax.text(bbox[0], bbox[1] - 2,
'{:s} {:.3f}'.format(class_name, score),
bbox=dict(facecolor=COLOR_WHEEL[cls_ind], alpha=0.5),
fontsize=14, color='white')
# Save image with bboxes overlaid
plt.axis('off')
plt.tight_layout()
#plt.show()
if not os.path.exists(video_dataset._output_dir):
os.makedirs(video_dataset._output_dir)
plt.savefig(os.path.join(video_dataset._output_dir, os.path.basename(img_path)))
plt.clf()
plt.close('all')
示例9: detect
# 需要導入模塊: from model.nms import nms_wrapper [as 別名]
# 或者: from model.nms.nms_wrapper import nms [as 別名]
def detect(net, im_path,device, thresh=0.5, visualize=False, timers=None, pyramid=False, visualization_folder=None):
"""
Main module to detect faces
:param net: The trained network
:param im_path: The path to the image
:param device: GPU or CPU device to be used
:param thresh: Detection with a less score than thresh are ignored
:param visualize: Whether to visualize the detections
:param timers: Timers for calculating detect time (if None new timers would be created)
:param pyramid: Whether to use pyramid during inference
:param visualization_folder: If set the visualizations would be saved in this folder (if visualize=True)
:return: cls_dets (bounding boxes concatenated with scores) and the timers
"""
if not timers:
timers = {'detect': Timer(),
'misc': Timer()}
im = cv2.imread(im_path)
imfname = os.path.basename(im_path)
sys.stdout.flush()
timers['detect'].tic()
if not pyramid:
im_scale = _compute_scaling_factor(im.shape, cfg.TEST.SCALES[0], cfg.TEST.MAX_SIZE)
im_blob = _get_image_blob(im, [im_scale])[0]
ssh_rois = forward(net,im_blob,im_scale,device,thresh)
else :
assert False, 'not implement'
timers['detect'].toc()
timers['misc'].tic()
nms_keep = nms(ssh_rois, cfg.TEST.RPN_NMS_THRESH)
cls_dets = ssh_rois[nms_keep, :]
if visualize:
plt_name = os.path.splitext(imfname)[0] + '_detections_{}'.format("SSH pytorch")
visusalize_detections(im, cls_dets, plt_name=plt_name, visualization_folder=visualization_folder)
timers['misc'].toc()
return cls_dets, timers
示例10: parse_args
# 需要導入模塊: from model.nms import nms_wrapper [as 別名]
# 或者: from model.nms.nms_wrapper import nms [as 別名]
def parse_args():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(description='Train a Fast R-CNN network')
parser.add_argument('exp_name', type=str, default=None, help='experiment name')
parser.add_argument('--dataset', dest='dataset',
help='training dataset',
default='pascal_voc', type=str)
parser.add_argument('--cfg', dest='cfg_file',
help='optional config file',
default='cfgs/vgg16.yml', type=str)
parser.add_argument('--net', dest='net',
help='detnet59, etc',
default='detnet59', type=str)
parser.add_argument('--set', dest='set_cfgs',
help='set config keys', default=None,
nargs=argparse.REMAINDER)
parser.add_argument('--load_dir', dest='load_dir',
help='directory to load models', default="weights")
parser.add_argument('--image_dir', dest='image_dir',
help='directory to load images', default="demo_images/",
type=str)
parser.add_argument('--result_dir', dest='result_dir', help='directory to save visual result',
default="vis_results/",
type=str)
parser.add_argument('--cuda', dest='cuda',
help='whether use CUDA',
action='store_true')
parser.add_argument('--checksession', dest='checksession',
help='checksession to load model',
default=4, type=int)
parser.add_argument('--checkepoch', dest='checkepoch',
help='checkepoch to load network',
default=6, type=int)
parser.add_argument('--checkpoint', dest='checkpoint',
help='checkpoint to load network',
default=10000, type=int)
parser.add_argument('--soft_nms', help='whether use soft nms', action='store_true')
parser.add_argument('--cag', dest='class_agnostic',
help='whether perform class_agnostic bbox regression',
action='store_true')
args = parser.parse_args()
return args
示例11: parse_args
# 需要導入模塊: from model.nms import nms_wrapper [as 別名]
# 或者: from model.nms.nms_wrapper import nms [as 別名]
def parse_args():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(description='Train a Fast R-CNN network')
parser.add_argument('exp_name', type=str, default=None, help='experiment name')
parser.add_argument('--dataset', dest='dataset',
help='training dataset',
default='pascal_voc', type=str)
parser.add_argument('--cfg', dest='cfg_file',
help='optional config file',
default='cfgs/vgg16.yml', type=str)
parser.add_argument('--net', dest='net',
help='detnet59, etc',
default='detnet59', type=str)
parser.add_argument('--set', dest='set_cfgs',
help='set config keys', default=None,
nargs=argparse.REMAINDER)
parser.add_argument('--load_dir', dest='load_dir',
help='directory to load models', default="/srv/share/jyang375/models",
type=str)
parser.add_argument('--cuda', dest='cuda',
help='whether use CUDA',
action='store_true')
parser.add_argument('--ls', dest='large_scale',
help='whether use large imag scale',
action='store_true')
parser.add_argument('--mGPUs', dest='mGPUs',
help='whether use multiple GPUs',
action='store_true')
parser.add_argument('--cag', dest='class_agnostic',
help='whether perform class_agnostic bbox regression',
action='store_true')
parser.add_argument('--parallel_type', dest='parallel_type',
help='which part of model to parallel, 0: all, 1: model before roi pooling',
default=0, type=int)
parser.add_argument('--checksession', dest='checksession',
help='checksession to load model',
default=1, type=int)
parser.add_argument('--checkepoch', dest='checkepoch',
help='checkepoch to load network',
default=1, type=int)
parser.add_argument('--checkpoint', dest='checkpoint',
help='checkpoint to load network',
default=10021, type=int)
parser.add_argument('--bs', dest='batch_size',
help='batch_size',
default=1, type=int)
parser.add_argument('--vis', dest='vis',
help='visualization mode',
action='store_true')
parser.add_argument('--soft_nms', help='whether use soft nms', action='store_true')
args = parser.parse_args()
return args