當前位置: 首頁>>代碼示例>>Python>>正文


Python model.model方法代碼示例

本文整理匯總了Python中model.model方法的典型用法代碼示例。如果您正苦於以下問題:Python model.model方法的具體用法?Python model.model怎麽用?Python model.model使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在model的用法示例。


在下文中一共展示了model.model方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import model [as 別名]
# 或者: from model import model [as 別名]
def __init__(self, env, dueling, noisy, fname):
        self.g = tf.Graph()
        self.noisy = noisy
        self.dueling = dueling
        self.env = env
        with self.g.as_default():
            self.act = deepq.build_act_enjoy(
                make_obs_ph=lambda name: U.Uint8Input(
                    env.observation_space.shape, name=name),
                q_func=dueling_model if dueling else model,
                num_actions=env.action_space.n,
                noisy=noisy
            )
            self.saver = tf.train.Saver()
        self.sess = tf.Session(graph=self.g)

        if fname is not None:
            print('Loading Model...')
            self.saver.restore(self.sess, fname) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:21,代碼來源:enjoy-adv.py

示例2: maybe_save_model

# 需要導入模塊: import model [as 別名]
# 或者: from model import model [as 別名]
def maybe_save_model(savedir, container, state):
    if savedir is None:
        return
    start_time = time.time()
    model_dir = "model-{}".format(state["num_iters"])
    U.save_state(os.path.join(savedir, model_dir, "saved"))
    if container is not None:
        container.put(os.path.join(savedir, model_dir), model_dir)
    relatively_safe_pickle_dump(state,
                                os.path.join(savedir,
                                             'training_state.pkl.zip'),
                                compression=True)
    if container is not None:
        container.put(os.path.join(savedir, 'training_state.pkl.zip'),
                      'training_state.pkl.zip')
    relatively_safe_pickle_dump(state["monitor_state"],
                                os.path.join(savedir, 'monitor_state.pkl'))
    if container is not None:
        container.put(os.path.join(savedir, 'monitor_state.pkl'),
                      'monitor_state.pkl')
    logger.log("Saved model in {} seconds\n".format(time.time() - start_time)) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:23,代碼來源:train.py

示例3: maybe_load_model

# 需要導入模塊: import model [as 別名]
# 或者: from model import model [as 別名]
def maybe_load_model(savedir, container):
    """Load model if present at the specified path."""
    if savedir is None:
        return

    state_path = os.path.join(os.path.join(savedir, 'training_state.pkl.zip'))
    if container is not None:
        logger.log("Attempting to download model from Azure")
        found_model = container.get(savedir, 'training_state.pkl.zip')
    else:
        found_model = os.path.exists(state_path)
    if found_model:
        state = pickle_load(state_path, compression=True)
        model_dir = "model-{}".format(state["num_iters"])
        if container is not None:
            container.get(savedir, model_dir)
        U.load_state(os.path.join(savedir, model_dir, "saved"))
        logger.log("Loaded models checkpoint at {} iterations".format(
            state["num_iters"]))
        return state 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:22,代碼來源:train.py

示例4: create_train_model

# 需要導入模塊: import model [as 別名]
# 或者: from model import model [as 別名]
def create_train_model(model_creator, hparams, data_dir):
    """Create train graph, model, and iterator."""
    train_data_path = []
    for root, _, name in os.walk(os.path.join(data_dir, 'train_data')):
        for x in name:
            if x.split('.')[-1] == 'mat':
                train_data_path.append(os.path.join(root, x))
    assert len(train_data_path) == 1
    train_data = scio.loadmat(*train_data_path)['data']
    assert hparams.src_len == hparams.tgt_len == train_data.shape[1]
    graph = tf.Graph()

    with graph.as_default(), tf.container("train"):
        # channels: [features, SBP, DBP, MBP]
        train_src_data = train_data[:, :, 0:hparams.src_feature_size]
        train_tgt_data = train_data[:, :, hparams.src_feature_size:hparams.src_feature_size + hparams.tgt_feature_size]
        src_dataset = tf.data.Dataset.from_tensor_slices(train_src_data)
        tgt_dataset = tf.data.Dataset.from_tensor_slices(train_tgt_data)
        iterator = get_iterator(src_dataset, tgt_dataset, batch_size=hparams.batch_size,
                                random_seed=hparams.random_seed, is_train=True)
        model = model_creator(hparams, iterator=iterator, mode=tf.contrib.learn.ModeKeys.TRAIN)
    return TrainModel(graph=graph, model=model, iterator=iterator) 
開發者ID:psu1,項目名稱:DeepRNN,代碼行數:24,代碼來源:process.py

示例5: create_eval_model

# 需要導入模塊: import model [as 別名]
# 或者: from model import model [as 別名]
def create_eval_model(model_creator, hparams, data_dir):
    """Create eval graph, model and iterator."""
    eval_data_path = []
    for root, _, name in os.walk(os.path.join(data_dir, 'eval_data')):
        for x in name:
            if x.split('.')[-1] == 'mat':
                eval_data_path.append(os.path.join(root, x))
    assert len(eval_data_path) == 1
    eval_data = scio.loadmat(*eval_data_path)['data']
    data_mean, data_std = load_data_mean_std(hparams, data_dir)
    batch_size = eval_data.shape[0]
    graph = tf.Graph()

    with graph.as_default(), tf.container("eval"):
        eval_src_data = eval_data[:, :, 0:hparams.src_feature_size]
        # channels: [features, SBP, DBP, MBP]
        eval_tgt_data = eval_data[:, :, hparams.src_feature_size:hparams.src_feature_size + hparams.tgt_feature_size]
        src_dataset = tf.data.Dataset.from_tensor_slices(eval_src_data)
        tgt_dataset = tf.data.Dataset.from_tensor_slices(eval_tgt_data)
        iterator = get_iterator(src_dataset, tgt_dataset, batch_size=batch_size,
                                random_seed=hparams.random_seed, is_train=False)
        model = model_creator(hparams, iterator=iterator, mode=tf.contrib.learn.ModeKeys.EVAL)
    return EvalModel(graph=graph, model=model, iterator=iterator, data_mean=data_mean, data_std=data_std) 
開發者ID:psu1,項目名稱:DeepRNN,代碼行數:25,代碼來源:process.py

示例6: maybe_save_model

# 需要導入模塊: import model [as 別名]
# 或者: from model import model [as 別名]
def maybe_save_model(savedir, container, state):
    """This function checkpoints the model and state of the training algorithm."""
    if savedir is None:
        return
    start_time = time.time()
    model_dir = "model-{}".format(state["num_iters"])
    U.save_state(os.path.join(savedir, model_dir, "saved"))
    if container is not None:
        container.put(os.path.join(savedir, model_dir), model_dir)
    relatively_safe_pickle_dump(state, os.path.join(savedir, 'training_state.pkl.zip'), compression=True)
    if container is not None:
        container.put(os.path.join(savedir, 'training_state.pkl.zip'), 'training_state.pkl.zip')
    relatively_safe_pickle_dump(state["monitor_state"], os.path.join(savedir, 'monitor_state.pkl'))
    if container is not None:
        container.put(os.path.join(savedir, 'monitor_state.pkl'), 'monitor_state.pkl')
    logger.log("Saved model in {} seconds\n".format(time.time() - start_time)) 
開發者ID:wenh123,項目名稱:NoisyNet-DQN,代碼行數:18,代碼來源:train.py

示例7: maybe_load_model

# 需要導入模塊: import model [as 別名]
# 或者: from model import model [as 別名]
def maybe_load_model(savedir, container):
    """Load model if present at the specified path."""
    if savedir is None:
        return

    state_path = os.path.join(os.path.join(savedir, 'training_state.pkl.zip'))
    if container is not None:
        logger.log("Attempting to download model from Azure")
        found_model = container.get(savedir, 'training_state.pkl.zip')
    else:
        found_model = os.path.exists(state_path)
    if found_model:
        state = pickle_load(state_path, compression=True)
        model_dir = "model-{}".format(state["num_iters"])
        if container is not None:
            container.get(savedir, model_dir)
        U.load_state(os.path.join(savedir, model_dir, "saved"))
        logger.log("Loaded models checkpoint at {} iterations".format(state["num_iters"]))
        return state 
開發者ID:wenh123,項目名稱:NoisyNet-DQN,代碼行數:21,代碼來源:train.py

示例8: tower_loss

# 需要導入模塊: import model [as 別名]
# 或者: from model import model [as 別名]
def tower_loss(images, score_maps, geo_maps, training_masks, reuse_variables=None):
    # Build inference graph
    with tf.variable_scope(tf.get_variable_scope(), reuse=reuse_variables):
        f_score, f_geometry = model.model(images, is_training=True)

    model_loss = model.loss(score_maps, f_score,
                            geo_maps, f_geometry,
                            training_masks)
    total_loss = tf.add_n([model_loss] + tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))

    # add summary
    if reuse_variables is None:
        tf.summary.image('input', images)
        tf.summary.image('score_map', score_maps)
        tf.summary.image('score_map_pred', f_score * 255)
        tf.summary.image('geo_map_0', geo_maps[:, :, :, 0:1])
        tf.summary.image('geo_map_0_pred', f_geometry[:, :, :, 0:1])
        tf.summary.image('training_masks', training_masks)
        tf.summary.scalar('model_loss', model_loss)
        tf.summary.scalar('total_loss', total_loss)

    return total_loss, model_loss 
開發者ID:HaozhengLi,項目名稱:EAST_ICPR,代碼行數:24,代碼來源:multigpu_train.py

示例9: predict_from_model

# 需要導入模塊: import model [as 別名]
# 或者: from model import model [as 別名]
def predict_from_model(logit_groups_geometry, logit_groups_semantics,
                       temperature):
  """Reconstruct predicted geometry and semantics from model output."""
  predictions_geometry_list = []
  for logit_group in logit_groups_geometry:
    if FLAGS.p_norm > 0:
      predictions_geometry_list.append(logit_group[:, :, :, :, 0])
    else:
      logit_group_shape = logit_group.shape_as_list()
      logit_group = tf.reshape(logit_group, [-1, logit_group_shape[-1]])
      samples = tf.multinomial(temperature * logit_group, 1)
      predictions_geometry_list.append(
          tf.reshape(samples, logit_group_shape[:-1]))
  predictions_semantics_list = []
  if FLAGS.predict_semantics:
    for logit_group in logit_groups_semantics:
      predictions_semantics_list.append(tf.argmax(logit_group, 4))
  else:
    predictions_semantics_list = [
        tf.zeros(shape=predictions_geometry_list[0].shape, dtype=tf.uint8)
    ] * len(predictions_geometry_list)
  return predictions_geometry_list, predictions_semantics_list 
開發者ID:angeladai,項目名稱:ScanComplete,代碼行數:24,代碼來源:complete_scan.py

示例10: __init__

# 需要導入模塊: import model [as 別名]
# 或者: from model import model [as 別名]
def __init__(self, env, dueling, noisy, fname):
		self.g = tf.Graph()
		self.noisy = noisy
		self.dueling = dueling 
		self.env = env
		with self.g.as_default():
			self.act = deepq.build_act_enjoy(
				make_obs_ph=lambda name: U.Uint8Input(env.observation_space.shape, name=name),
				q_func=dueling_model if dueling else model,
				num_actions=env.action_space.n,
				noisy=noisy
				)
			self.saver = tf.train.Saver()
		self.sess = tf.Session(graph=self.g)	
		
		if fname is not None:
			print ('Loading Model...')
			self.saver.restore(self.sess, fname) 
開發者ID:behzadanksu,項目名稱:rl-attack,代碼行數:20,代碼來源:enjoy-adv.py

示例11: parse_args

# 需要導入模塊: import model [as 別名]
# 或者: from model import model [as 別名]
def parse_args():
	parser = argparse.ArgumentParser("Run an already learned DQN model.")
	# Environment
	parser.add_argument("--env", type=str, required=True, help="name of the game")
	parser.add_argument("--model-dir", type=str, default=None, help="load model from this directory. ")
	parser.add_argument("--video", type=str, default=None, help="Path to mp4 file where the video of first episode will be recorded.")
	boolean_flag(parser, "stochastic", default=True, help="whether or not to use stochastic actions according to models eps value")
	boolean_flag(parser, "dueling", default=False, help="whether or not to use dueling model")
	#V: Attack Arguments#
	parser.add_argument("--model-dir2", type=str, default=None, help="load adversarial model from this directory (blackbox attacks). ")
	parser.add_argument("--attack", type=str, default=None, help="Method to attack the model.")
	boolean_flag(parser, "noisy", default=False, help="whether or not to NoisyNetwork")
	boolean_flag(parser, "noisy2", default=False, help="whether or not to NoisyNetwork")
	boolean_flag(parser, "blackbox", default=False, help="whether or not to NoisyNetwork")

	return parser.parse_args() 
開發者ID:behzadanksu,項目名稱:rl-attack,代碼行數:18,代碼來源:enjoy-adv.py

示例12: load_model

# 需要導入模塊: import model [as 別名]
# 或者: from model import model [as 別名]
def load_model(self):
    sess = tf.Session()

    with tf.get_default_graph().as_default():
      input_images = tf.placeholder(tf.float32, shape=[None, None, None, 3], name='input_images')
      global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0), trainable=False)

      f_score, f_geometry = model.model(input_images, is_training=False)

      variable_averages = tf.train.ExponentialMovingAverage(0.997, global_step)
      saver = tf.train.Saver(variable_averages.variables_to_restore())

      with sess.as_default():
        model_path = tf.train.latest_checkpoint(self.model_dir)
        saver.restore(sess, model_path)

    self._f_score = f_score
    self._f_geometry = f_geometry
    self._sess = sess
    self._input_images = input_images 
開發者ID:ucloud,項目名稱:uai-sdk,代碼行數:22,代碼來源:east_inference.py

示例13: __init__

# 需要導入模塊: import model [as 別名]
# 或者: from model import model [as 別名]
def __init__(self, env, dueling, noisy, fname):
    self.g = tf.Graph()
    self.noisy = noisy
    self.dueling = dueling
    self.env = env
    with self.g.as_default():
      self.act = deepq.build_act_enjoy(
          make_obs_ph=lambda name: U.Uint8Input(
              env.observation_space.shape, name=name),
          q_func=dueling_model if dueling else model,
          num_actions=env.action_space.n,
          noisy=noisy
      )
      self.saver = tf.train.Saver()
    self.sess = tf.Session(graph=self.g)

    if fname is not None:
      print('Loading Model...')
      self.saver.restore(self.sess, fname) 
開發者ID:tensorflow,項目名稱:cleverhans,代碼行數:21,代碼來源:enjoy-adv.py

示例14: maybe_save_model

# 需要導入模塊: import model [as 別名]
# 或者: from model import model [as 別名]
def maybe_save_model(savedir, container, state):
  if savedir is None:
    return
  start_time = time.time()
  model_dir = "model-{}".format(state["num_iters"])
  U.save_state(os.path.join(savedir, model_dir, "saved"))
  if container is not None:
    container.put(os.path.join(savedir, model_dir), model_dir)
  relatively_safe_pickle_dump(state,
                              os.path.join(savedir,
                                           'training_state.pkl.zip'),
                              compression=True)
  if container is not None:
    container.put(os.path.join(savedir, 'training_state.pkl.zip'),
                  'training_state.pkl.zip')
  relatively_safe_pickle_dump(state["monitor_state"],
                              os.path.join(savedir, 'monitor_state.pkl'))
  if container is not None:
    container.put(os.path.join(savedir, 'monitor_state.pkl'),
                  'monitor_state.pkl')
  logger.log("Saved model in {} seconds\n".format(time.time() - start_time)) 
開發者ID:tensorflow,項目名稱:cleverhans,代碼行數:23,代碼來源:train.py

示例15: maybe_load_model

# 需要導入模塊: import model [as 別名]
# 或者: from model import model [as 別名]
def maybe_load_model(savedir, container):
  """Load model if present at the specified path."""
  if savedir is None:
    return

  state_path = os.path.join(os.path.join(savedir, 'training_state.pkl.zip'))
  if container is not None:
    logger.log("Attempting to download model from Azure")
    found_model = container.get(savedir, 'training_state.pkl.zip')
  else:
    found_model = os.path.exists(state_path)
  if found_model:
    state = pickle_load(state_path, compression=True)
    model_dir = "model-{}".format(state["num_iters"])
    if container is not None:
      container.get(savedir, model_dir)
    U.load_state(os.path.join(savedir, model_dir, "saved"))
    logger.log("Loaded models checkpoint at {} iterations".format(
        state["num_iters"]))
    return state 
開發者ID:tensorflow,項目名稱:cleverhans,代碼行數:22,代碼來源:train.py


注:本文中的model.model方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。