當前位置: 首頁>>代碼示例>>Python>>正文


Python _fasterRCNN.__init__方法代碼示例

本文整理匯總了Python中model.faster_rcnn.faster_rcnn._fasterRCNN.__init__方法的典型用法代碼示例。如果您正苦於以下問題:Python _fasterRCNN.__init__方法的具體用法?Python _fasterRCNN.__init__怎麽用?Python _fasterRCNN.__init__使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在model.faster_rcnn.faster_rcnn._fasterRCNN的用法示例。


在下文中一共展示了_fasterRCNN.__init__方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from model.faster_rcnn.faster_rcnn import _fasterRCNN [as 別名]
# 或者: from model.faster_rcnn.faster_rcnn._fasterRCNN import __init__ [as 別名]
def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=0,
                                    ceil_mode=True)  # change
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        # it is slightly better whereas slower to set stride = 1
        # self.layer4 = self._make_layer(block, 512, layers[3], stride=1)
        self.avgpool = nn.AvgPool2d(7)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_() 
開發者ID:ucbdrive,項目名稱:3d-vehicle-tracking,代碼行數:27,代碼來源:resnet.py

示例2: __init__

# 需要導入模塊: from model.faster_rcnn.faster_rcnn import _fasterRCNN [as 別名]
# 或者: from model.faster_rcnn.faster_rcnn._fasterRCNN import __init__ [as 別名]
def __init__(self, block, layers, num_classes=1000):
    self.inplanes = 64
    super(ResNet, self).__init__()
    self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                 bias=False)
    self.bn1 = nn.BatchNorm2d(64)
    self.relu = nn.ReLU(inplace=True)
    self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=0, ceil_mode=True) # change
    self.layer1 = self._make_layer(block, 64, layers[0])
    self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
    self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
    self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
    # it is slightly better whereas slower to set stride = 1
    # self.layer4 = self._make_layer(block, 512, layers[3], stride=1)
    self.avgpool = nn.AvgPool2d(7)
    self.fc = nn.Linear(512 * block.expansion, num_classes)

    for m in self.modules():
      if isinstance(m, nn.Conv2d):
        n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
        m.weight.data.normal_(0, math.sqrt(2. / n))
      elif isinstance(m, nn.BatchNorm2d):
        m.weight.data.fill_(1)
        m.bias.data.zero_() 
開發者ID:princewang1994,項目名稱:RFCN_CoupleNet.pytorch,代碼行數:26,代碼來源:resnet.py

示例3: __init__

# 需要導入模塊: from model.faster_rcnn.faster_rcnn import _fasterRCNN [as 別名]
# 或者: from model.faster_rcnn.faster_rcnn._fasterRCNN import __init__ [as 別名]
def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=0, ceil_mode=True)  # change
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        # it is slightly better whereas slower to set stride = 1
        # self.layer4 = self._make_layer(block, 512, layers[3], stride=1)
        self.avgpool = nn.AvgPool2d(7)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_() 
開發者ID:jinyu121,項目名稱:CIOD,代碼行數:26,代碼來源:resnet.py

示例4: __init__

# 需要導入模塊: from model.faster_rcnn.faster_rcnn import _fasterRCNN [as 別名]
# 或者: from model.faster_rcnn.faster_rcnn._fasterRCNN import __init__ [as 別名]
def __init__(self, block, layers, num_classes=1000):
    self.inplanes = 64
    super(ResNet, self).__init__()
    self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                 bias=False)
    self.bn1 = nn.BatchNorm2d(64)
    self.relu = nn.ReLU(inplace=True)
    self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=0, ceil_mode=True) # change
    self.layer1 = self._make_layer(block, 64, layers[0])
    self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
    self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
    self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=True)
    self.avgpool = nn.AvgPool2d(7)
    self.fc = nn.Linear(512 * block.expansion, num_classes)

    for m in self.modules():
      if isinstance(m, nn.Conv2d):
        n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
        m.weight.data.normal_(0, math.sqrt(2. / n))
      elif isinstance(m, nn.BatchNorm2d):
        m.weight.data.fill_(1)
        m.bias.data.zero_() 
開發者ID:violetteshev,項目名稱:bottom-up-features,代碼行數:24,代碼來源:resnet.py

示例5: __init__

# 需要導入模塊: from model.faster_rcnn.faster_rcnn import _fasterRCNN [as 別名]
# 或者: from model.faster_rcnn.faster_rcnn._fasterRCNN import __init__ [as 別名]
def __init__(self, classes, pretrained=False, class_agnostic=False):
    self.model_path = 'data/pretrained_model/vgg16_caffe.pth'
    self.dout_base_model = 512
    self.pretrained = pretrained
    self.class_agnostic = class_agnostic

    _fasterRCNN.__init__(self, classes, class_agnostic) 
開發者ID:Feynman27,項目名稱:pytorch-detect-to-track,代碼行數:9,代碼來源:vgg16.py

示例6: __init__

# 需要導入模塊: from model.faster_rcnn.faster_rcnn import _fasterRCNN [as 別名]
# 或者: from model.faster_rcnn.faster_rcnn._fasterRCNN import __init__ [as 別名]
def __init__(self, classes, pretrained=False, class_agnostic=False):
        self.model_path = 'data/pretrained_model/vgg16_caffe.pth'
        self.dout_base_model = 512
        self.pretrained = pretrained
        self.class_agnostic = class_agnostic

        _fasterRCNN.__init__(self, classes, class_agnostic) 
開發者ID:ucbdrive,項目名稱:3d-vehicle-tracking,代碼行數:9,代碼來源:vgg16.py

示例7: __init__

# 需要導入模塊: from model.faster_rcnn.faster_rcnn import _fasterRCNN [as 別名]
# 或者: from model.faster_rcnn.faster_rcnn._fasterRCNN import __init__ [as 別名]
def __init__(self, classes, pretrained=False, class_agnostic=False, sup=False):
        self.model_path = 'data/pretrained_model/vgg11_caffe.pth'
        self.dout_base_model = 512
        self.pretrained = pretrained
        self.class_agnostic = class_agnostic

        _fasterRCNN.__init__(self, classes, class_agnostic, sup) 
開發者ID:twangnh,項目名稱:Distilling-Object-Detectors,代碼行數:9,代碼來源:vgg11.py

示例8: __init__

# 需要導入模塊: from model.faster_rcnn.faster_rcnn import _fasterRCNN [as 別名]
# 或者: from model.faster_rcnn.faster_rcnn._fasterRCNN import __init__ [as 別名]
def __init__(self, classes, pretrained=False, class_agnostic=False, sup=False):
    self.model_path = 'data/pretrained_model/vgg16_caffe.pth'
    self.dout_base_model = 512
    self.pretrained = pretrained
    self.class_agnostic = class_agnostic

    _fasterRCNN.__init__(self, classes, class_agnostic, sup) 
開發者ID:twangnh,項目名稱:Distilling-Object-Detectors,代碼行數:9,代碼來源:vgg16.py

示例9: __init__

# 需要導入模塊: from model.faster_rcnn.faster_rcnn import _fasterRCNN [as 別名]
# 或者: from model.faster_rcnn.faster_rcnn._fasterRCNN import __init__ [as 別名]
def __init__(self, classes, version, pretrained=False, class_agnostic=False, lighthead=False):
    self.model_path = 'data/pretrained_model/squeezenet{}.pth'.format(version)
    self.pretrained = pretrained
    self.class_agnostic = class_agnostic
    self.lighthead = lighthead
    self.version = version
    self.dout_base_model = 256
    if self.lighthead:
      self.dout_lh_base_model = 512
    self.clip = None

    _fasterRCNN.__init__(self, classes, class_agnostic, lighthead, compact_mode=True) 
開發者ID:chengsq,項目名稱:pytorch-lighthead,代碼行數:14,代碼來源:squeezenet.py

示例10: __init__

# 需要導入模塊: from model.faster_rcnn.faster_rcnn import _fasterRCNN [as 別名]
# 或者: from model.faster_rcnn.faster_rcnn._fasterRCNN import __init__ [as 別名]
def __init__(self, num_classes=1000):
        """ Constructor
        Args:
            num_classes: number of classes
        """
        super(Xception, self).__init__()
        
        self.num_classes = num_classes

        self.conv1 = nn.Conv2d(3, 24, kernel_size=3, stride=2, padding=1, bias=False)      # 224 x 224 -> 112 x 112
        self.bn1 = nn.BatchNorm2d(24)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=0, ceil_mode=True)     # -> 56 x 56

        # Stage 2
        self.block1 = _Block(24, 144, 1+3, 2, start_with_relu=False, grow_first=True)     # -> 28 x 28

        # Stage 3
        self.block2 = _Block(144, 288, 1+7, 2, start_with_relu=True, grow_first=True)     # -> 14 x 14

        # Stage 4
        self.block3 = _Block(288, 576, 1+3, 2, start_with_relu=True, grow_first=True)     # -> 7 x 7

        self.avgpool = nn.AvgPool2d(7)
        self.fc = nn.Linear(576, num_classes)



        #------- init weights --------
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
        #----------------------------- 
開發者ID:chengsq,項目名稱:pytorch-lighthead,代碼行數:39,代碼來源:xception_like.py

示例11: __init__

# 需要導入模塊: from model.faster_rcnn.faster_rcnn import _fasterRCNN [as 別名]
# 或者: from model.faster_rcnn.faster_rcnn._fasterRCNN import __init__ [as 別名]
def __init__(self, n_class=1000, input_size=224, width_mult=1.):
        super(MobileNetV2, self).__init__()
        # setting of inverted residual blocks
        self.interverted_residual_setting = [
            # t, c, n, s
            [1, 16, 1, 1],
            [6, 24, 2, 2],
            [6, 32, 3, 2],
            [6, 64, 4, 2],
            [6, 96, 3, 1],
            [6, 160, 3, 2],
            [6, 320, 1, 1],
        ]

        # building first layer
        input_channel = int(32 * width_mult)
        self.last_channel = int(1280 * width_mult) if width_mult > 1.0 else 1280
        self.features = [conv_bn(3, input_channel, 2)]
        # building inverted residual blocks
        for t, c, n, s in self.interverted_residual_setting:
            output_channel = int(c * width_mult)
            for i in range(n):
                if i == 0:
                    self.features.append(InvertedResidual(input_channel, output_channel, s, t))
                else:
                    self.features.append(InvertedResidual(input_channel, output_channel, 1, t))
                input_channel = output_channel
        # building last several layers
        self.features.append(conv_1x1_bn(input_channel, self.last_channel))
        self.features.append(nn.AvgPool2d(input_size/32))
        # make it nn.Sequential
        self.features = nn.Sequential(*self.features)

        # building classifier
        self.classifier = nn.Sequential(
            nn.Dropout(),
            nn.Linear(self.last_channel, n_class),
        ) 
開發者ID:chengsq,項目名稱:pytorch-lighthead,代碼行數:40,代碼來源:mobilenet.py

示例12: __init__

# 需要導入模塊: from model.faster_rcnn.faster_rcnn import _fasterRCNN [as 別名]
# 或者: from model.faster_rcnn.faster_rcnn._fasterRCNN import __init__ [as 別名]
def __init__(self, classes, num_layers=101, pretrained=False, class_agnostic=False, lighthead=False):
    self.model_path = 'data/pretrained_model/resnet101_caffe.pth'
    self.pretrained = pretrained
    self.class_agnostic = class_agnostic
    self.lighthead = lighthead
    self.dout_base_model = 1024
    if self.lighthead:
      self.dout_lh_base_model = 2048

    _fasterRCNN.__init__(self, classes, class_agnostic, lighthead, compact_mode=False) 
開發者ID:chengsq,項目名稱:pytorch-lighthead,代碼行數:12,代碼來源:resnet.py

示例13: __init__

# 需要導入模塊: from model.faster_rcnn.faster_rcnn import _fasterRCNN [as 別名]
# 或者: from model.faster_rcnn.faster_rcnn._fasterRCNN import __init__ [as 別名]
def __init__(self, classes, pretrained=False, class_agnostic=False, lighthead=False):
    self.model_path = 'data/pretrained_model/vgg16_caffe.pth'
    self.lighthead = lighthead
    self.pretrained = pretrained
    self.class_agnostic = class_agnostic
    self.dout_base_model = 512
    if self.lighthead:
      self.dout_lh_base_model = 512

    _fasterRCNN.__init__(self, classes, class_agnostic, lighthead, compact_mode=True) 
開發者ID:chengsq,項目名稱:pytorch-lighthead,代碼行數:12,代碼來源:vgg16.py


注:本文中的model.faster_rcnn.faster_rcnn._fasterRCNN.__init__方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。