當前位置: 首頁>>代碼示例>>Python>>正文


Python common.ResBlock方法代碼示例

本文整理匯總了Python中model.common.ResBlock方法的典型用法代碼示例。如果您正苦於以下問題:Python common.ResBlock方法的具體用法?Python common.ResBlock怎麽用?Python common.ResBlock使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在model.common的用法示例。


在下文中一共展示了common.ResBlock方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from model import common [as 別名]
# 或者: from model.common import ResBlock [as 別名]
def __init__(self, args, conv=common.default_conv):
        super(MDSR, self).__init__()
        n_resblocks = args.n_resblocks
        n_feats = args.n_feats
        kernel_size = 3
        act = nn.ReLU(True)
        self.scale_idx = 0
        self.url = url['r{}f{}'.format(n_resblocks, n_feats)]
        self.sub_mean = common.MeanShift(args.rgb_range)
        self.add_mean = common.MeanShift(args.rgb_range, sign=1)

        m_head = [conv(args.n_colors, n_feats, kernel_size)]

        self.pre_process = nn.ModuleList([
            nn.Sequential(
                common.ResBlock(conv, n_feats, 5, act=act),
                common.ResBlock(conv, n_feats, 5, act=act)
            ) for _ in args.scale
        ])

        m_body = [
            common.ResBlock(
                conv, n_feats, kernel_size, act=act
            ) for _ in range(n_resblocks)
        ]
        m_body.append(conv(n_feats, n_feats, kernel_size))

        self.upsample = nn.ModuleList([
            common.Upsampler(conv, s, n_feats, act=False) for s in args.scale
        ])

        m_tail = [conv(n_feats, args.n_colors, kernel_size)]

        self.head = nn.Sequential(*m_head)
        self.body = nn.Sequential(*m_body)
        self.tail = nn.Sequential(*m_tail) 
開發者ID:HolmesShuan,項目名稱:OISR-PyTorch,代碼行數:38,代碼來源:mdsr.py

示例2: __init__

# 需要導入模塊: from model import common [as 別名]
# 或者: from model.common import ResBlock [as 別名]
def __init__(self, args, conv=common.default_conv):
        super(EDSR, self).__init__()

        n_resblocks = args.n_resblocks
        n_feats = args.n_feats
        kernel_size = 3 
        scale = args.scale[0]
        act = nn.ReLU(True)
        self.sub_mean = common.MeanShift(args.rgb_range)
        self.add_mean = common.MeanShift(args.rgb_range, sign=1)

        # define head module
        m_head = [conv(args.n_colors, n_feats, kernel_size)]

        # define body module
        m_body = [
            common.ResBlock(
                conv, n_feats, kernel_size, act=act, res_scale=args.res_scale
            ) for _ in range(n_resblocks)
        ]
        m_body.append(conv(n_feats, n_feats, kernel_size))

        # define tail module
        m_tail = [
            common.Upsampler(conv, scale, n_feats, act=False),
            conv(n_feats, args.n_colors, kernel_size)
        ]

        self.head = nn.Sequential(*m_head)
        self.body = nn.Sequential(*m_body)
        self.tail = nn.Sequential(*m_tail) 
開發者ID:HolmesShuan,項目名稱:OISR-PyTorch,代碼行數:33,代碼來源:edsr.py

示例3: __init__

# 需要導入模塊: from model import common [as 別名]
# 或者: from model.common import ResBlock [as 別名]
def __init__(self, args, conv=common.default_conv):
        super(EDSR, self).__init__()

        n_resblocks = args.n_resblocks
        n_feats = args.n_feats
        kernel_size = 3 
        scale = args.scale[0]
        act = nn.ReLU(True)
        # self.url = url['r{}f{}x{}'.format(n_resblocks, n_feats, scale)]
        self.sub_mean = common.MeanShift(args.rgb_range)
        self.add_mean = common.MeanShift(args.rgb_range, sign=1)

        # define head module
        m_head = [conv(args.n_colors, n_feats, kernel_size)]

        # define body module
        m_body = [
            common.ResBlock(
                conv, n_feats, kernel_size, act=act, res_scale=args.res_scale
            ) for _ in range(n_resblocks)
        ]
        m_body.append(conv(n_feats, n_feats, kernel_size))

        # define tail module
        m_tail = [
            common.Upsampler(conv, scale, n_feats, act=False),
            conv(n_feats, args.n_colors, kernel_size)
        ]

        self.head = nn.Sequential(*m_head)
        self.body = nn.Sequential(*m_body)
        self.tail = nn.Sequential(*m_tail) 
開發者ID:HolmesShuan,項目名稱:OISR-PyTorch,代碼行數:34,代碼來源:edsr.py

示例4: __init__

# 需要導入模塊: from model import common [as 別名]
# 或者: from model.common import ResBlock [as 別名]
def __init__(self, opt):
        super(NET, self).__init__()

        n_resblocks = opt.n_resblocks
        n_feats = opt.channels
        bias = opt.bias
        norm_type = opt.norm_type
        act_type = opt.act_type
        block_type = opt.block_type
        denoise = opt.denoise
        scale = opt.scale

        if denoise:
            head = [common.ConvBlock(4, n_feats, 5, act_type=act_type, bias=True)]
        else:
            head = [common.ConvBlock(3, n_feats, 5, act_type=act_type, bias=True)]
        if block_type.lower() == 'rrdb':
            resblock = [common.RRDB(n_feats, n_feats, 3,
                                       1, bias, norm_type, act_type, 0.2)
                            for _ in range(n_resblocks)]
        elif block_type.lower() == 'res':
            resblock = [common.ResBlock(n_feats, 3, norm_type, act_type, res_scale=1, bias=bias)
                            for _ in range(n_resblocks)]
        else:
            raise RuntimeError('block_type is not supported')

        resblock += [common.ConvBlock(n_feats, n_feats, 3, bias=True)]
        up = [common.Upsampler(scale, n_feats, norm_type, act_type, bias=bias),
              common.ConvBlock(n_feats, 3, 3, bias=True)]

        self.model = nn.Sequential(*head, common.ShortcutBlock(nn.Sequential(*resblock)), *up)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.xavier_normal_(m.weight)
                m.weight.requires_grad = True
                if m.bias is not None:
                    m.bias.data.zero_()
                    m.bias.requires_grad = True 
開發者ID:guochengqian,項目名稱:TENet,代碼行數:41,代碼來源:srrgb.py

示例5: __init__

# 需要導入模塊: from model import common [as 別名]
# 或者: from model.common import ResBlock [as 別名]
def __init__(self, opt):
        super(NET, self).__init__()

        n_resblocks = opt.n_resblocks
        n_feats = opt.channels
        bias = opt.bias
        norm_type = opt.norm_type
        act_type = opt.act_type
        block_type = opt.block_type
        denoise = opt.denoise
        scale = opt.scale

        if denoise:
            head = [common.ConvBlock(5, n_feats, 5, act_type=act_type, bias=True)]
        else:
            head = [common.ConvBlock(4, n_feats, 5, act_type=act_type, bias=True)]
        if block_type.lower() == 'rrdb':
            resblock = [common.RRDB(n_feats, n_feats, 3,
                                       1, bias, norm_type, act_type, 0.2)
                            for _ in range(n_resblocks)]
        elif block_type.lower() == 'res':
            resblock = [common.ResBlock(n_feats, 3, norm_type, act_type, res_scale=1, bias=bias)
                            for _ in range(n_resblocks)]
        else:
            raise RuntimeError('block_type is not supported')

        resblock += [common.ConvBlock(n_feats, n_feats, 3, bias=True)]
        up = [common.Upsampler(scale*2, n_feats, norm_type, act_type, bias=bias),
              common.ConvBlock(n_feats, 1, 3, bias=True)]

        self.model = nn.Sequential(*head, common.ShortcutBlock(nn.Sequential(*resblock)), *up)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.xavier_normal_(m.weight)
                m.weight.requires_grad = True
                if m.bias is not None:
                    m.bias.data.zero_()
                    m.bias.requires_grad = True 
開發者ID:guochengqian,項目名稱:TENet,代碼行數:41,代碼來源:srraw.py

示例6: __init__

# 需要導入模塊: from model import common [as 別名]
# 或者: from model.common import ResBlock [as 別名]
def __init__(self, opt):
        super(NET, self).__init__()

        n_resblocks = opt.n_resblocks
        n_feats = opt.channels
        bias = opt.bias
        norm_type = opt.norm_type
        act_type = opt.act_type
        block_type = opt.block_type

        head = [common.ConvBlock(5, n_feats, 5, act_type=act_type, bias=True)]
        if block_type.lower() == 'rrdb':
            resblock = [common.RRDB(n_feats, n_feats, 3,
                                       1, bias, norm_type, act_type, 0.2)
                            for _ in range(n_resblocks)]
        elif block_type.lower() == 'res':
            resblock = [common.ResBlock(n_feats, 3, norm_type, act_type, res_scale=1, bias=bias)
                            for _ in range(n_resblocks)]
        else:
            raise RuntimeError('block_type is not supported')

        resblock += [common.ConvBlock(n_feats, n_feats, 3, bias=True)]
        tail = [common.Upsampler(2, n_feats, norm_type, act_type, bias=bias),
                   common.ConvBlock(n_feats, 1, 3, bias=True)]

        self.model = nn.Sequential(*head, common.ShortcutBlock(nn.Sequential(*resblock)), *tail)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.xavier_normal_(m.weight)
                m.weight.requires_grad = True
                if m.bias is not None:
                    m.bias.data.zero_()
                    m.bias.requires_grad = True 
開發者ID:guochengqian,項目名稱:TENet,代碼行數:36,代碼來源:denoraw.py

示例7: __init__

# 需要導入模塊: from model import common [as 別名]
# 或者: from model.common import ResBlock [as 別名]
def __init__(self, opt):
        super(NET, self).__init__()

        n_resblocks = opt.n_resblocks
        n_feats = opt.channels
        bias = opt.bias
        norm_type = opt.norm_type
        act_type = opt.act_type
        block_type = opt.block_type

        head = [common.ConvBlock(4, n_feats, 5, act_type=act_type, bias=True)]
        if block_type.lower() == 'rrdb':
            resblock = [common.RRDB(n_feats, n_feats, 3,
                                       1, bias, norm_type, act_type, 0.2)
                            for _ in range(n_resblocks)]
        elif block_type.lower() == 'res':
            resblock = [common.ResBlock(n_feats, 3, norm_type, act_type, res_scale=1, bias=bias)
                            for _ in range(n_resblocks)]
        else:
            raise RuntimeError('block_type is not supported')

        resblock += [common.ConvBlock(n_feats, n_feats, 3, bias=True)]
        tail = [common.ConvBlock(n_feats, 3, 3, bias=True)]

        self.model = nn.Sequential(*head, common.ShortcutBlock(nn.Sequential(*resblock)), *tail)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.xavier_normal_(m.weight)
                m.weight.requires_grad = True
                if m.bias is not None:
                    m.bias.data.zero_()
                    m.bias.requires_grad = True 
開發者ID:guochengqian,項目名稱:TENet,代碼行數:35,代碼來源:denorgb.py

示例8: __init__

# 需要導入模塊: from model import common [as 別名]
# 或者: from model.common import ResBlock [as 別名]
def __init__(self, args, conv=common.default_conv):
        super(EDSR, self).__init__()

        n_resblocks = args.n_resblocks
        n_feats = args.n_feats
        kernel_size = 3 
        scale = args.scale[0]
        act = nn.ReLU(True)
        url_name = 'r{}f{}x{}'.format(n_resblocks, n_feats, scale)
        if url_name in url:
            self.url = url[url_name]
        else:
            self.url = None
        self.sub_mean = common.MeanShift(args.rgb_range)
        self.add_mean = common.MeanShift(args.rgb_range, sign=1)

        # define head module
        m_head = [conv(args.n_colors, n_feats, kernel_size)]

        # define body module
        m_body = [
            common.ResBlock(
                conv, n_feats, kernel_size, act=act, res_scale=args.res_scale
            ) for _ in range(n_resblocks)
        ]
        m_body.append(conv(n_feats, n_feats, kernel_size))

        # define tail module
        m_tail = [
            common.Upsampler(conv, scale, n_feats, act=False),
            conv(n_feats, args.n_colors, kernel_size)
        ]

        self.head = nn.Sequential(*m_head)
        self.body = nn.Sequential(*m_body)
        self.tail = nn.Sequential(*m_tail) 
開發者ID:thstkdgus35,項目名稱:EDSR-PyTorch,代碼行數:38,代碼來源:edsr.py

示例9: __init__

# 需要導入模塊: from model import common [as 別名]
# 或者: from model.common import ResBlock [as 別名]
def __init__(self, args, conv=common.default_conv):
        super(NHR_Res32, self).__init__()
        n_resblocks = args.n_resblocks
        args.n_resblocks = args.n_resblocks - args.n_resblocks_ft
        n_feats = args.n_feats
        kernel_size = 3
        scale = args.scale[0]
        act = nn.ReLU(True)

        tail_ft2 = [
            common.ResBlock(
                conv, n_feats+4, kernel_size, act=act, res_scale=args.res_scale
            ) for _ in range(args.n_resblocks_ft)
        ]
        tail_ft2.append(conv(n_feats+4, args.n_colors, kernel_size))

        tail_ft1 = [
            common.Upsampler(conv, scale, n_feats, act=False),
        ]
        premodel = EDSR(args)
        self.sub_mean = premodel.sub_mean
        self.head = premodel.head
        body = premodel.body
        body_child = list(body.children())
        body_ft = [body_child.pop()]
        self.body = nn.Sequential(*body_child)
        self.body_ft = nn.Sequential(*body_ft)
        self.tail_ft1 = nn.Sequential(*tail_ft1)
        self.tail_ft2 = nn.Sequential(*tail_ft2)
        self.add_mean = premodel.add_mean
        args.n_resblocks = n_resblocks
        # self.premodel = EDSR(args)
        # from IPython import embed; embed(); exit() 
開發者ID:ofsoundof,項目名稱:3D_Appearance_SR,代碼行數:35,代碼來源:finetune.py

示例10: __init__

# 需要導入模塊: from model import common [as 別名]
# 或者: from model.common import ResBlock [as 別名]
def __init__(self, args, conv=common.default_conv):
        super(EDSR, self).__init__()

        n_resblock = args.n_resblocks
        n_feats = args.n_feats
        kernel_size = 3 
        scale = args.scale[0]
        act = nn.ReLU(True)

        rgb_mean = (0.4488, 0.4371, 0.4040)
        rgb_std = (1.0, 1.0, 1.0)
        self.sub_mean = common.MeanShift(args.rgb_range, rgb_mean, rgb_std)
        
        # define head module
        m_head = [conv(args.n_colors, n_feats, kernel_size)]

        # define body module
        m_body = [
            common.ResBlock(
                conv, n_feats, kernel_size, act=act, res_scale=args.res_scale
            ) for _ in range(n_resblock)
        ]
        m_body.append(conv(n_feats, n_feats, kernel_size))

        # define tail module
        m_tail = [
            common.Upsampler(conv, scale, n_feats, act=False),
            conv(n_feats, args.n_colors, kernel_size)
        ]

        self.add_mean = common.MeanShift(args.rgb_range, rgb_mean, rgb_std, 1)

        self.head = nn.Sequential(*m_head)
        self.body = nn.Sequential(*m_body)
        self.tail = nn.Sequential(*m_tail)
        # from IPython import embed; embed(); exit() 
開發者ID:ofsoundof,項目名稱:3D_Appearance_SR,代碼行數:38,代碼來源:edsr.py

示例11: __init__

# 需要導入模塊: from model import common [as 別名]
# 或者: from model.common import ResBlock [as 別名]
def __init__(self, args, conv=common.default_conv):
        super(EDSR, self).__init__()

        n_resblock = args.n_resblocks
        n_feats = args.n_feats
        kernel_size = 3 
        scale = args.scale[0]
        act = nn.ReLU(True)

        rgb_mean = (0.4488, 0.4371, 0.4040)
        rgb_std = (1.0, 1.0, 1.0)
        self.sub_mean = common.MeanShift(args.rgb_range, rgb_mean, rgb_std)
        
        # define head module
        m_head = [conv(args.n_colors, n_feats, kernel_size)]

        # define body module
        m_body = [
            common.ResBlock(
                conv, n_feats, kernel_size, act=act, res_scale=args.res_scale
            ) for _ in range(n_resblock)
        ]
        m_body.append(conv(n_feats, n_feats, kernel_size))

        # define tail module
        m_tail = [
            common.Upsampler(conv, scale, n_feats, act=False),
            nn.Conv2d(
                n_feats, args.n_colors, kernel_size,
                padding=(kernel_size//2)
            )
        ]

        self.add_mean = common.MeanShift(args.rgb_range, rgb_mean, rgb_std, 1)

        self.head = nn.Sequential(*m_head)
        self.body = nn.Sequential(*m_body)
        self.tail = nn.Sequential(*m_tail) 
開發者ID:subeeshvasu,項目名稱:2018_subeesh_epsr_eccvw,代碼行數:40,代碼來源:edsr.py

示例12: __init__

# 需要導入模塊: from model import common [as 別名]
# 或者: from model.common import ResBlock [as 別名]
def __init__(self, args, conv=common.default_conv):
        super(EDSR, self).__init__()

        n_resblock = args.n_resblocks
        n_feats = args.n_feats
        kernel_size = 3 
        scale = args.scale[0]
        act = nn.ReLU(True)

        rgb_mean = (0.4488, 0.4371, 0.4040)
        rgb_std = (1.0, 1.0, 1.0)
        self.sub_mean = common.MeanShift(args.rgb_range, rgb_mean, rgb_std)
        
        # define head module
        m_head = [conv(args.n_colors, n_feats, kernel_size)]

        # define body module
        m_body = [
            common.ResBlock(
                conv, n_feats, kernel_size, act=act, res_scale=args.res_scale
            ) for _ in range(n_resblock)
        ]
        m_body.append(conv(n_feats, n_feats, kernel_size))

        # define tail module
        m_tail = [
            common.Upsampler(conv, scale, n_feats, act=False),
            conv(n_feats, args.n_colors, kernel_size)
        ]

        self.add_mean = common.MeanShift(args.rgb_range, rgb_mean, rgb_std, 1)

        self.head = nn.Sequential(*m_head)
        self.body = nn.Sequential(*m_body)
        self.tail = nn.Sequential(*m_tail) 
開發者ID:MIVRC,項目名稱:MSRN-PyTorch,代碼行數:37,代碼來源:edsr.py

示例13: __init__

# 需要導入模塊: from model import common [as 別名]
# 或者: from model.common import ResBlock [as 別名]
def __init__(self, args, conv=common.default_conv):
        super(EDSR, self).__init__()

        n_resblocks = args.n_resblocks
        n_feats = args.n_feats
        kernel_size = 3 
        scale = args.scale[0]
        act = nn.ReLU(True)
        # self.url = url['r{}f{}x{}'.format(n_resblocks, n_feats, scale)]
        self.sub_mean = common.MeanShift(args.rgb_range)
        self.add_mean = common.MeanShift(args.rgb_range, sign=1)

        # define head module
        m_head = [conv(args.n_colors, n_feats, kernel_size)]

        # define body module
        self.m_body0 = common.ResBlock(
                    conv, n_feats, kernel_size, act=act, res_scale=args.res_scale)
        self.m_downsample0 = conv(n_feats, n_feats//4, 1)
        self.m_body1 = common.ResBlock(
                    conv, n_feats//4, kernel_size, act=act, res_scale=args.res_scale)
        self.m_downsample1 = conv(n_feats//4, n_feats, 1)
        # self.tail1 = conv(n_feats//4, n_feats//16, kernel_size)
        self.m_body2 = common.ResBlock(
                    conv, n_feats, kernel_size, act=act, res_scale=args.res_scale)
        self.m_downsample2 = conv(n_feats, n_feats//4, 1)
        self.m_body3 = common.ResBlock(
                    conv, n_feats//4, kernel_size, act=act, res_scale=args.res_scale)
        self.m_downsample3 = conv(n_feats//4, n_feats, 1)
        # self.tail3 = conv(n_feats//4, n_feats//16, kernel_size)
        self.m_body4 = common.ResBlock(
                    conv, n_feats, kernel_size, act=act, res_scale=args.res_scale)
        self.m_downsample4 = conv(n_feats, n_feats//4, 1)
        self.m_body5 = common.ResBlock(
                    conv, n_feats//4, kernel_size, act=act, res_scale=args.res_scale)
        self.m_downsample5 = conv(n_feats//4, n_feats, 1)
        # self.tail5 = conv(n_feats//4, n_feats//16, kernel_size)

        m_body = [conv(n_feats, n_feats, kernel_size)]

        # define tail module
        m_tail = [
            # common.Upsampler(conv, scale, n_feats, act=False),
            conv(n_feats, args.n_colors, kernel_size)
        ]

        # self.refine = conv(n_feats//4, args.n_colors, kernel_size)

        self.head = nn.Sequential(*m_head)
        self.body = nn.Sequential(*m_body)
        self.tail = nn.Sequential(*m_tail) 
開發者ID:HolmesShuan,項目名稱:OISR-PyTorch,代碼行數:53,代碼來源:edsr.py

示例14: __init__

# 需要導入模塊: from model import common [as 別名]
# 或者: from model.common import ResBlock [as 別名]
def __init__(self, opt):
        super(NET, self).__init__()
        # parameter
        denoise = opt.denoise
        block_type = opt.block_type
        n_feats = opt.channels
        act_type = opt.act_type
        bias = opt.bias
        norm_type = opt.norm_type
        n_resblocks = opt.n_resblocks

        # architecture
        if denoise:
            dm_head = [common.ConvBlock(5, n_feats, 5,
                                        act_type=act_type, bias=True)]
        else:
            dm_head = [common.ConvBlock(4, n_feats, 5,
                                        act_type=act_type, bias=True)]
        if block_type.lower() == 'rrdb':
            dm_resblock = [common.RRDB(n_feats, n_feats, 3,
                                       1, bias, norm_type, act_type, 0.2)
                            for _ in range(n_resblocks)]
        elif block_type.lower() == 'res':
            dm_resblock = [common.ResBlock(n_feats, 3, norm_type,
                                            act_type, res_scale=1, bias=bias)
                            for _ in range(n_resblocks)]
        else:
            raise RuntimeError('block_type is not supported')

        dm_resblock += [common.ConvBlock(n_feats, n_feats, 3, bias=True)]
        m_dm_up = [common.Upsampler(2, n_feats, norm_type, act_type, bias=bias),
                   common.ConvBlock(n_feats, 3, 3, bias=True)]

        self.model_dm = nn.Sequential(*dm_head, common.ShortcutBlock(nn.Sequential(*dm_resblock)),
                                      *m_dm_up)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.xavier_normal_(m.weight)
                m.weight.requires_grad = True
                if m.bias is not None:
                    m.bias.data.zero_()
                    m.bias.requires_grad = True 
開發者ID:guochengqian,項目名稱:TENet,代碼行數:45,代碼來源:demo.py

示例15: forward

# 需要導入模塊: from model import common [as 別名]
# 或者: from model.common import ResBlock [as 別名]
def forward(self, x):
        x = self.model_dm(x)
        return x
    #
    # def __init__(self, n_resblock=3, n_feats=64, denoise=True, bias=True,
    #              norm_type=False, act_type='relu', block_type='rrdb'):
    #     super(NET, self).__init__()
    #
    #     if denoise:
    #         dm_head = [common.ConvBlock(5, n_feats, 5,
    #                                     act_type=act_type, bias=True)]
    #     else:
    #         dm_head = [common.ConvBlock(4, n_feats, 5,
    #                                     act_type=act_type, bias=True)]
    #     if block_type.lower() == 'rrdb':
    #         dm_resblock = [common.RRDB(n_feats, n_feats, 3,
    #                                    1, bias, norm_type, act_type, 0.2)
    #                         for _ in range(n_resblock)]
    #     elif block_type.lower() == 'res':
    #         dm_resblock = [common.ResBlock(n_feats, 3, norm_type,
    #                                         act_type, res_scale=1, bias=bias)
    #                         for _ in range(n_resblock)]
    #     else:
    #         raise RuntimeError('block_type is not supported')
    #
    #     dm_resblock += [common.ConvBlock(n_feats, n_feats, 3, bias=True)]
    #     m_dm_up = [common.Upsampler(2, n_feats, norm_type, act_type, bias=bias),
    #                common.ConvBlock(n_feats, 3, 3, bias=True)]
    #
    #     self.model_dm = nn.Sequential(*dm_head, common.ShortcutBlock(nn.Sequential(*dm_resblock)),
    #                                   *m_dm_up)
    #
    #     for m in self.modules():
    #         if isinstance(m, nn.Conv2d):
    #             nn.init.xavier_normal_(m.weight)
    #             m.weight.requires_grad = True
    #             if m.bias is not None:
    #                 m.bias.data.zero_()
    #                 m.bias.requires_grad = True
    #
    # def forward(self, x):
    #     x = self.model_dm(x)
    #     return x 
開發者ID:guochengqian,項目名稱:TENet,代碼行數:45,代碼來源:demo.py


注:本文中的model.common.ResBlock方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。