當前位置: 首頁>>代碼示例>>Python>>正文


Python common.BasicBlock方法代碼示例

本文整理匯總了Python中model.common.BasicBlock方法的典型用法代碼示例。如果您正苦於以下問題:Python common.BasicBlock方法的具體用法?Python common.BasicBlock怎麽用?Python common.BasicBlock使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在model.common的用法示例。


在下文中一共展示了common.BasicBlock方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from model import common [as 別名]
# 或者: from model.common import BasicBlock [as 別名]
def __init__(self, args, conv=common.default_conv):
        super(VDSR, self).__init__()

        n_resblocks = args.n_resblocks
        n_feats = args.n_feats
        kernel_size = 3 
        self.url = url['r{}f{}'.format(n_resblocks, n_feats)]
        self.sub_mean = common.MeanShift(args.rgb_range)
        self.add_mean = common.MeanShift(args.rgb_range, sign=1)

        def basic_block(in_channels, out_channels, act):
            return common.BasicBlock(
                conv, in_channels, out_channels, kernel_size,
                bias=True, bn=False, act=act
            )

        # define body module
        m_body = []
        m_body.append(basic_block(args.n_colors, n_feats, nn.ReLU(True)))
        for _ in range(n_resblocks - 2):
            m_body.append(basic_block(n_feats, n_feats, nn.ReLU(True)))
        m_body.append(basic_block(n_feats, args.n_colors, None))

        self.body = nn.Sequential(*m_body) 
開發者ID:HolmesShuan,項目名稱:OISR-PyTorch,代碼行數:26,代碼來源:vdsr.py

示例2: __init__

# 需要導入模塊: from model import common [as 別名]
# 或者: from model.common import BasicBlock [as 別名]
def __init__(self, args, gan_type='GAN'):
        super(Discriminator, self).__init__()

        in_channels = 3
        out_channels = 64
        depth = 7
        #bn = not gan_type == 'WGAN_GP'
        bn = True
        act = nn.LeakyReLU(negative_slope=0.2, inplace=True)

        m_features = [
            common.BasicBlock(args.n_colors, out_channels, 3, bn=bn, act=act)
        ]
        for i in range(depth):
            in_channels = out_channels
            if i % 2 == 1:
                stride = 1
                out_channels *= 2
            else:
                stride = 2
            m_features.append(common.BasicBlock(
                in_channels, out_channels, 3, stride=stride, bn=bn, act=act
            ))

        self.features = nn.Sequential(*m_features)

        patch_size = args.patch_size // (2**((depth + 1) // 2))
        m_classifier = [
            nn.Linear(out_channels * patch_size**2, 1024),
            act,
            nn.Linear(1024, 1)
        ]
        self.classifier = nn.Sequential(*m_classifier) 
開發者ID:ofsoundof,項目名稱:3D_Appearance_SR,代碼行數:35,代碼來源:discriminator.py


注:本文中的model.common.BasicBlock方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。