本文整理匯總了Python中model.build_model方法的典型用法代碼示例。如果您正苦於以下問題:Python model.build_model方法的具體用法?Python model.build_model怎麽用?Python model.build_model使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類model
的用法示例。
在下文中一共展示了model.build_model方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_eval
# 需要導入模塊: import model [as 別名]
# 或者: from model import build_model [as 別名]
def test_eval():
data_root = "data_dir"
dataset = AudiobookDataset(data_root)
if hp.input_type == 'raw':
collate_fn = raw_collate
elif hp.input_type == 'bits':
collate_fn = discrete_collate
else:
raise ValueError("input_type:{} not supported".format(hp.input_type))
data_loader = DataLoader(dataset, collate_fn=collate_fn, shuffle=True, num_workers=0, batch_size=hp.batch_size)
device = torch.device("cuda" if use_cuda else "cpu")
print("using device:{}".format(device))
# build model, create optimizer
model = build_model().to(device)
evaluate_model(model, data_loader)
示例2: get_test_ops
# 需要導入模塊: import model [as 別名]
# 或者: from model import build_model [as 別名]
def get_test_ops(x, y, params, reuse=False):
with tf.device('/gpu:0'):
inputs = tf.reshape(x, [-1, _HEIGHT, _WIDTH, _DEPTH])
labels = y
res = model.build_model(inputs, params, False, reuse)
logits = res['logits']
cross_entropy = tf.losses.softmax_cross_entropy(
logits=logits, onehot_labels=labels)
# Add weight decay to the loss.
loss = cross_entropy + params['weight_decay'] * tf.add_n(
[tf.nn.l2_loss(v) for v in tf.trainable_variables()])
if 'aux_logits' in res:
aux_logits = res['aux_logits']
aux_loss = tf.losses.softmax_cross_entropy(
logits=aux_logits, onehot_labels=labels, weights=params['aux_head_weight'])
loss += aux_loss
predictions = tf.argmax(logits, axis=1)
labels = tf.argmax(y, axis=1)
test_accuracy = tf.reduce_mean(tf.cast(tf.equal(predictions, labels), dtype=tf.float32))
return loss, test_accuracy
示例3: get_valid_ops
# 需要導入模塊: import model [as 別名]
# 或者: from model import build_model [as 別名]
def get_valid_ops(x, y, params, reuse=False):
with tf.device('/gpu:0'):
inputs = tf.reshape(x, [-1, _HEIGHT, _WIDTH, _DEPTH])
labels = y
res = model.build_model(inputs, params, False, reuse)
logits = res['logits']
cross_entropy = tf.losses.softmax_cross_entropy(
logits=logits, onehot_labels=labels)
# Add weight decay to the loss.
loss = cross_entropy + params['weight_decay'] * tf.add_n(
[tf.nn.l2_loss(v) for v in tf.trainable_variables()])
if 'aux_logits' in res:
aux_logits = res['aux_logits']
aux_loss = tf.losses.softmax_cross_entropy(
logits=aux_logits, onehot_labels=labels, weights=params['aux_head_weight'])
loss += aux_loss
predictions = tf.argmax(logits, axis=1)
labels = tf.argmax(y, axis=1)
valid_accuracy = tf.reduce_mean(tf.cast(tf.equal(predictions, labels), dtype=tf.float32))
return loss, valid_accuracy
示例4: plot_autoencoder
# 需要導入模塊: import model [as 別名]
# 或者: from model import build_model [as 別名]
def plot_autoencoder(weightsfile):
print('building model')
layers = model.build_model()
batch_size = 128
print('compiling theano function')
encoder_func = theano_funcs.create_encoder_func(layers)
print('loading weights from %s' % (weightsfile))
model.load_weights([
layers['l_decoder_out'],
layers['l_discriminator_out'],
], weightsfile)
print('loading data')
X_train, y_train, X_test, y_test = utils.load_mnist()
train_datapoints = []
print('transforming training data')
for train_idx in get_batch_idx(X_train.shape[0], batch_size):
X_train_batch = X_train[train_idx]
train_batch_codes = encoder_func(X_train_batch)
train_datapoints.append(train_batch_codes)
test_datapoints = []
print('transforming test data')
for test_idx in get_batch_idx(X_test.shape[0], batch_size):
X_test_batch = X_test[test_idx]
test_batch_codes = encoder_func(X_test_batch)
test_datapoints.append(test_batch_codes)
Z_train = np.vstack(train_datapoints)
Z_test = np.vstack(test_datapoints)
plot(Z_train, y_train, Z_test, y_test,
filename='adversarial_train_val.png',
title='projected onto latent space of autoencoder')
示例5: train
# 需要導入模塊: import model [as 別名]
# 或者: from model import build_model [as 別名]
def train(args):
if args.config_file != "":
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir and not os.path.exists(output_dir):
os.makedirs(output_dir)
shutil.copy(args.config_file, cfg.OUTPUT_DIR)
num_gpus = torch.cuda.device_count()
logger = setup_logger('reid_baseline', output_dir, 0)
logger.info('Using {} GPUS'.format(num_gpus))
logger.info(args)
logger.info('Running with config:\n{}'.format(cfg))
train_dl, val_dl, num_query, num_classes = make_dataloader(cfg, num_gpus)
model = build_model(cfg, num_classes)
loss_func = make_loss(cfg, num_classes)
trainer = BaseTrainer(cfg, model, train_dl, val_dl,
loss_func, num_query, num_gpus)
for epoch in range(trainer.epochs):
for batch in trainer.train_dl:
trainer.step(batch)
trainer.handle_new_batch()
trainer.handle_new_epoch()
示例6: load_model
# 需要導入模塊: import model [as 別名]
# 或者: from model import build_model [as 別名]
def load_model():
model = None
with tf.Graph().as_default():
print( "loading pretrained model...")
network = build_model()
model = DNN(network)
if os.path.isfile(TRAINING.save_model_path):
model.load(TRAINING.save_model_path)
else:
print( "Error: file '{}' not found".format(TRAINING.save_model_path))
return model
示例7: test_save_checkpoint
# 需要導入模塊: import model [as 別名]
# 或者: from model import build_model [as 別名]
def test_save_checkpoint():
checkpoint_path = "checkpoints/"
device = torch.device("cuda" if use_cuda else "cpu")
model = build_model()
optimizer = optim.Adam(model.parameters(), lr=1e-4)
global global_step, global_epoch, global_test_step
save_checkpoint(device, model, optimizer, global_step, checkpoint_path, global_epoch)
model = load_checkpoint(checkpoint_path+"checkpoint_step000000000.pth", model, optimizer, False)
示例8: __init__
# 需要導入模塊: import model [as 別名]
# 或者: from model import build_model [as 別名]
def __init__(self, sess, checkpoint_dir=None):
self.z_file_init = tf.placeholder(tf.string, [], name='z_filename_init')
self.z_roi_init = tf.placeholder(tf.float32, [1, 4], name='z_roi_init')
self.z_file = tf.placeholder(tf.string, [], name='z_filename')
self.z_roi = tf.placeholder(tf.float32, [1, 4], name='z_roi')
self.x_file = tf.placeholder(tf.string, [], name='x_filename')
self.x_roi = tf.placeholder(tf.float32, [config.num_scale, 4], name='x_roi')
init_z_exemplar,_ = self._read_and_crop_image(self.z_file_init, self.z_roi_init, [config.z_exemplar_size, config.z_exemplar_size])
init_z_exemplar = tf.reshape(init_z_exemplar, [1, 1, config.z_exemplar_size, config.z_exemplar_size, 3])
init_z_exemplar = tf.tile(init_z_exemplar, [config.num_scale, 1, 1, 1, 1])
z_exemplar,_ = self._read_and_crop_image(self.z_file, self.z_roi, [config.z_exemplar_size, config.z_exemplar_size])
z_exemplar = tf.reshape(z_exemplar, [1, 1, config.z_exemplar_size, config.z_exemplar_size, 3])
z_exemplar = tf.tile(z_exemplar, [config.num_scale, 1, 1, 1, 1])
self.x_instances, self.image = self._read_and_crop_image(self.x_file, self.x_roi, [config.x_instance_size, config.x_instance_size])
self.x_instances = tf.reshape(self.x_instances, [config.num_scale, 1, config.x_instance_size, config.x_instance_size, 3])
with tf.variable_scope('mann'):
mem_cell = MemNet(config.hidden_size, config.memory_size, config.slot_size, False)
self.initial_state = build_initial_state(init_z_exemplar, mem_cell, ModeKeys.PREDICT)
self.response, saver, self.final_state = build_model(z_exemplar, self.x_instances, mem_cell, self.initial_state, ModeKeys.PREDICT)
self.att_score = mem_cell.att_score
up_response_size = config.response_size * config.response_up
self.up_response = tf.squeeze(tf.image.resize_images(tf.expand_dims(self.response, -1),
[up_response_size, up_response_size],
method=tf.image.ResizeMethod.BICUBIC,
align_corners=True), -1)
if checkpoint_dir is not None:
saver.restore(sess, checkpoint_dir)
self._sess = sess
else:
ckpt = tf.train.get_checkpoint_state(config.checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
self._sess = sess
示例9: plot_latent_space
# 需要導入模塊: import model [as 別名]
# 或者: from model import build_model [as 別名]
def plot_latent_space(weightsfile):
print('building model')
layers = model.build_model()
batch_size = 128
decoder_func = theano_funcs.create_decoder_func(layers)
print('loading weights from %s' % (weightsfile))
model.load_weights([
layers['l_decoder_out'],
layers['l_discriminator_out'],
], weightsfile)
# regularly-spaced grid of points sampled from p(z)
Z = np.mgrid[2:-2.2:-0.2, -2:2.2:0.2].reshape(2, -1).T[:, ::-1].astype(np.float32)
reconstructions = []
print('generating samples')
for idx in get_batch_idx(Z.shape[0], batch_size):
Z_batch = Z[idx]
X_batch = decoder_func(Z_batch)
reconstructions.append(X_batch)
X = np.vstack(reconstructions)
X = X.reshape(X.shape[0], 28, 28)
fig = plt.figure(1, (12., 12.))
ax1 = plt.axes(frameon=False)
ax1.get_xaxis().set_visible(False)
ax1.get_yaxis().set_visible(False)
plt.title('samples generated from latent space of autoencoder')
grid = ImageGrid(
fig, 111, nrows_ncols=(21, 21),
share_all=True)
print('plotting latent space')
for i, x in enumerate(X):
img = (x * 255).astype(np.uint8)
grid[i].imshow(img, cmap='Greys_r')
grid[i].get_xaxis().set_visible(False)
grid[i].get_yaxis().set_visible(False)
grid[i].set_frame_on(False)
plt.savefig('latent_train_val.png', bbox_inches='tight')
示例10: run
# 需要導入模塊: import model [as 別名]
# 或者: from model import build_model [as 別名]
def run(self):
# set enviornment
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = str(self.gpuid)
print("InferenceWorker init, GPU ID: {}".format(self.gpuid))
from model import build_model
# load models
model_weights_path = 'models/model.00-0.0296.hdf5'
model = build_model()
model.load_weights(model_weights_path)
while True:
try:
try:
item = self.in_queue.get(block=False)
except queue.Empty:
continue
image_name_0, image_name_1, image_name_2 = item
filename = os.path.join(image_folder, image_name_0)
image_bgr = cv.imread(filename)
image_bgr = cv.resize(image_bgr, (img_size, img_size), cv.INTER_CUBIC)
image_rgb = cv.cvtColor(image_bgr, cv.COLOR_BGR2RGB)
image_rgb_0 = preprocess_input(image_rgb)
filename = os.path.join(image_folder, image_name_1)
image_bgr = cv.imread(filename)
image_bgr = cv.resize(image_bgr, (img_size, img_size), cv.INTER_CUBIC)
image_rgb = cv.cvtColor(image_bgr, cv.COLOR_BGR2RGB)
image_rgb_1 = preprocess_input(image_rgb)
filename = os.path.join(image_folder, image_name_2)
image_bgr = cv.imread(filename)
image_bgr = cv.resize(image_bgr, (img_size, img_size), cv.INTER_CUBIC)
image_rgb = cv.cvtColor(image_bgr, cv.COLOR_BGR2RGB)
image_rgb_2 = preprocess_input(image_rgb)
batch_inputs = np.empty((3, 1, img_size, img_size, 3), dtype=np.float32)
batch_inputs[0] = image_rgb_0
batch_inputs[1] = image_rgb_1
batch_inputs[2] = image_rgb_2
y_pred = model.predict([batch_inputs[0], batch_inputs[1], batch_inputs[2]])
a = y_pred[0, 0:128]
p = y_pred[0, 128:256]
n = y_pred[0, 256:384]
self.out_queue.put({'image_name': image_name_0, 'embedding': a})
self.out_queue.put({'image_name': image_name_1, 'embedding': p})
self.out_queue.put({'image_name': image_name_2, 'embedding': n})
if self.in_queue.qsize() == 0:
break
except Exception as e:
print(e)
import keras.backend as K
K.clear_session()
print('InferenceWorker done, GPU ID {}'.format(self.gpuid))
示例11: run
# 需要導入模塊: import model [as 別名]
# 或者: from model import build_model [as 別名]
def run(self):
# set enviornment
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = str(self.gpuid)
print("InferenceWorker init, GPU ID: {}".format(self.gpuid))
from model import build_model
# load models
model = build_model()
model.load_weights(get_best_model())
while True:
try:
sample = {}
try:
sample['a'] = self.in_queue.get(block=False)
sample['p'] = self.in_queue.get(block=False)
sample['n'] = self.in_queue.get(block=False)
except queue.Empty:
break
batch_inputs = np.empty((3, 1, img_size, img_size, channel), dtype=np.float32)
for j, role in enumerate(['a', 'p', 'n']):
image_name = sample[role]
filename = os.path.join(image_folder, image_name)
image_bgr = cv.imread(filename)
image_bgr = cv.resize(image_bgr, (img_size, img_size), cv.INTER_CUBIC)
image_rgb = cv.cvtColor(image_bgr, cv.COLOR_BGR2RGB)
batch_inputs[j, 0] = preprocess_input(image_rgb)
y_pred = model.predict([batch_inputs[0], batch_inputs[1], batch_inputs[2]])
a = y_pred[0, 0:128]
p = y_pred[0, 128:256]
n = y_pred[0, 256:384]
self.out_queue.put({'image_name': sample['a'], 'embedding': a})
self.out_queue.put({'image_name': sample['p'], 'embedding': p})
self.out_queue.put({'image_name': sample['n'], 'embedding': n})
self.signal_queue.put(SENTINEL)
if self.in_queue.qsize() == 0:
break
except Exception as e:
print(e)
import keras.backend as K
K.clear_session()
print('InferenceWorker done, GPU ID {}'.format(self.gpuid))