當前位置: 首頁>>代碼示例>>Python>>正文


Python model.build_model方法代碼示例

本文整理匯總了Python中model.build_model方法的典型用法代碼示例。如果您正苦於以下問題:Python model.build_model方法的具體用法?Python model.build_model怎麽用?Python model.build_model使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在model的用法示例。


在下文中一共展示了model.build_model方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_eval

# 需要導入模塊: import model [as 別名]
# 或者: from model import build_model [as 別名]
def test_eval():
    data_root = "data_dir"
    dataset = AudiobookDataset(data_root)
    if hp.input_type == 'raw':
        collate_fn = raw_collate
    elif hp.input_type == 'bits':
        collate_fn = discrete_collate
    else:
        raise ValueError("input_type:{} not supported".format(hp.input_type))
    data_loader = DataLoader(dataset, collate_fn=collate_fn, shuffle=True, num_workers=0, batch_size=hp.batch_size)
    device = torch.device("cuda" if use_cuda else "cpu")
    print("using device:{}".format(device))

    # build model, create optimizer
    model = build_model().to(device)

    evaluate_model(model, data_loader) 
開發者ID:G-Wang,項目名稱:WaveRNN-Pytorch,代碼行數:19,代碼來源:train.py

示例2: get_test_ops

# 需要導入模塊: import model [as 別名]
# 或者: from model import build_model [as 別名]
def get_test_ops(x, y, params, reuse=False):
  with tf.device('/gpu:0'):
    inputs = tf.reshape(x, [-1, _HEIGHT, _WIDTH, _DEPTH])
    labels = y
    res = model.build_model(inputs, params, False, reuse)
    logits = res['logits']
    cross_entropy = tf.losses.softmax_cross_entropy(
      logits=logits, onehot_labels=labels)
    # Add weight decay to the loss.
    loss = cross_entropy + params['weight_decay'] * tf.add_n(
      [tf.nn.l2_loss(v) for v in tf.trainable_variables()])

    if 'aux_logits' in res:
      aux_logits = res['aux_logits']
      aux_loss = tf.losses.softmax_cross_entropy(
        logits=aux_logits, onehot_labels=labels, weights=params['aux_head_weight'])
      loss += aux_loss

    predictions = tf.argmax(logits, axis=1)
    labels = tf.argmax(y, axis=1)
    test_accuracy = tf.reduce_mean(tf.cast(tf.equal(predictions, labels), dtype=tf.float32))
    return loss, test_accuracy 
開發者ID:renqianluo,項目名稱:NAO,代碼行數:24,代碼來源:test_cifar.py

示例3: get_valid_ops

# 需要導入模塊: import model [as 別名]
# 或者: from model import build_model [as 別名]
def get_valid_ops(x, y, params, reuse=False):
  with tf.device('/gpu:0'):
    inputs = tf.reshape(x, [-1, _HEIGHT, _WIDTH, _DEPTH])
    labels = y
    res = model.build_model(inputs, params, False, reuse)
    logits = res['logits']
    cross_entropy = tf.losses.softmax_cross_entropy(
      logits=logits, onehot_labels=labels)
    # Add weight decay to the loss.
    loss = cross_entropy + params['weight_decay'] * tf.add_n(
      [tf.nn.l2_loss(v) for v in tf.trainable_variables()])

    if 'aux_logits' in res:
      aux_logits = res['aux_logits']
      aux_loss = tf.losses.softmax_cross_entropy(
        logits=aux_logits, onehot_labels=labels, weights=params['aux_head_weight'])
      loss += aux_loss
    predictions = tf.argmax(logits, axis=1)
    labels = tf.argmax(y, axis=1)
    valid_accuracy = tf.reduce_mean(tf.cast(tf.equal(predictions, labels), dtype=tf.float32))
    return loss, valid_accuracy 
開發者ID:renqianluo,項目名稱:NAO,代碼行數:23,代碼來源:train_cifar.py

示例4: plot_autoencoder

# 需要導入模塊: import model [as 別名]
# 或者: from model import build_model [as 別名]
def plot_autoencoder(weightsfile):
    print('building model')
    layers = model.build_model()

    batch_size = 128

    print('compiling theano function')
    encoder_func = theano_funcs.create_encoder_func(layers)

    print('loading weights from %s' % (weightsfile))
    model.load_weights([
        layers['l_decoder_out'],
        layers['l_discriminator_out'],
    ], weightsfile)

    print('loading data')
    X_train, y_train, X_test, y_test = utils.load_mnist()

    train_datapoints = []
    print('transforming training data')
    for train_idx in get_batch_idx(X_train.shape[0], batch_size):
        X_train_batch = X_train[train_idx]
        train_batch_codes = encoder_func(X_train_batch)
        train_datapoints.append(train_batch_codes)

    test_datapoints = []
    print('transforming test data')
    for test_idx in get_batch_idx(X_test.shape[0], batch_size):
        X_test_batch = X_test[test_idx]
        test_batch_codes = encoder_func(X_test_batch)
        test_datapoints.append(test_batch_codes)

    Z_train = np.vstack(train_datapoints)
    Z_test = np.vstack(test_datapoints)

    plot(Z_train, y_train, Z_test, y_test,
         filename='adversarial_train_val.png',
         title='projected onto latent space of autoencoder') 
開發者ID:hjweide,項目名稱:adversarial-autoencoder,代碼行數:40,代碼來源:plot.py

示例5: train

# 需要導入模塊: import model [as 別名]
# 或者: from model import build_model [as 別名]
def train(args):
    if args.config_file != "":
        cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    output_dir = cfg.OUTPUT_DIR
    if output_dir and not os.path.exists(output_dir):
        os.makedirs(output_dir)
    shutil.copy(args.config_file, cfg.OUTPUT_DIR)

    num_gpus = torch.cuda.device_count()

    logger = setup_logger('reid_baseline', output_dir, 0)
    logger.info('Using {} GPUS'.format(num_gpus))
    logger.info(args)
    logger.info('Running with config:\n{}'.format(cfg))

    train_dl, val_dl, num_query, num_classes = make_dataloader(cfg, num_gpus) 

    model = build_model(cfg, num_classes)

    loss_func = make_loss(cfg, num_classes)

    trainer = BaseTrainer(cfg, model, train_dl, val_dl,
                          loss_func, num_query, num_gpus)

    for epoch in range(trainer.epochs):
        for batch in trainer.train_dl:
            trainer.step(batch)
            trainer.handle_new_batch()
        trainer.handle_new_epoch() 
開發者ID:DTennant,項目名稱:reid_baseline_with_syncbn,代碼行數:34,代碼來源:main.py

示例6: load_model

# 需要導入模塊: import model [as 別名]
# 或者: from model import build_model [as 別名]
def load_model():
    model = None
    with tf.Graph().as_default():
        print( "loading pretrained model...")
        network = build_model()
        model = DNN(network)
        if os.path.isfile(TRAINING.save_model_path):
            model.load(TRAINING.save_model_path)
        else:
            print( "Error: file '{}' not found".format(TRAINING.save_model_path))
    return model 
開發者ID:amineHorseman,項目名稱:facial-expression-recognition-using-cnn,代碼行數:13,代碼來源:predict.py

示例7: test_save_checkpoint

# 需要導入模塊: import model [as 別名]
# 或者: from model import build_model [as 別名]
def test_save_checkpoint():
    checkpoint_path = "checkpoints/"
    device = torch.device("cuda" if use_cuda else "cpu")
    model = build_model()
    optimizer = optim.Adam(model.parameters(), lr=1e-4)
    global global_step, global_epoch, global_test_step
    save_checkpoint(device, model, optimizer, global_step, checkpoint_path, global_epoch)

    model = load_checkpoint(checkpoint_path+"checkpoint_step000000000.pth", model, optimizer, False) 
開發者ID:G-Wang,項目名稱:WaveRNN-Pytorch,代碼行數:11,代碼來源:train.py

示例8: __init__

# 需要導入模塊: import model [as 別名]
# 或者: from model import build_model [as 別名]
def __init__(self, sess, checkpoint_dir=None):

        self.z_file_init = tf.placeholder(tf.string, [], name='z_filename_init')
        self.z_roi_init = tf.placeholder(tf.float32, [1, 4], name='z_roi_init')
        self.z_file = tf.placeholder(tf.string, [], name='z_filename')
        self.z_roi = tf.placeholder(tf.float32, [1, 4], name='z_roi')
        self.x_file = tf.placeholder(tf.string, [], name='x_filename')
        self.x_roi = tf.placeholder(tf.float32, [config.num_scale, 4], name='x_roi')

        init_z_exemplar,_ = self._read_and_crop_image(self.z_file_init, self.z_roi_init, [config.z_exemplar_size, config.z_exemplar_size])
        init_z_exemplar = tf.reshape(init_z_exemplar, [1, 1, config.z_exemplar_size, config.z_exemplar_size, 3])
        init_z_exemplar = tf.tile(init_z_exemplar, [config.num_scale, 1, 1, 1, 1])
        z_exemplar,_ = self._read_and_crop_image(self.z_file, self.z_roi, [config.z_exemplar_size, config.z_exemplar_size])
        z_exemplar = tf.reshape(z_exemplar, [1, 1, config.z_exemplar_size, config.z_exemplar_size, 3])
        z_exemplar = tf.tile(z_exemplar, [config.num_scale, 1, 1, 1, 1])
        self.x_instances, self.image = self._read_and_crop_image(self.x_file, self.x_roi, [config.x_instance_size, config.x_instance_size])
        self.x_instances = tf.reshape(self.x_instances, [config.num_scale, 1, config.x_instance_size, config.x_instance_size, 3])

        with tf.variable_scope('mann'):
            mem_cell = MemNet(config.hidden_size, config.memory_size, config.slot_size, False)

        self.initial_state = build_initial_state(init_z_exemplar, mem_cell, ModeKeys.PREDICT)
        self.response, saver, self.final_state = build_model(z_exemplar, self.x_instances, mem_cell, self.initial_state, ModeKeys.PREDICT)
        self.att_score = mem_cell.att_score

        up_response_size = config.response_size * config.response_up
        self.up_response = tf.squeeze(tf.image.resize_images(tf.expand_dims(self.response, -1),
                                                             [up_response_size, up_response_size],
                                                             method=tf.image.ResizeMethod.BICUBIC,
                                                             align_corners=True), -1)
        if checkpoint_dir is not None:
            saver.restore(sess, checkpoint_dir)
            self._sess = sess
        else:
            ckpt = tf.train.get_checkpoint_state(config.checkpoint_dir)
            if ckpt and ckpt.model_checkpoint_path:
                saver.restore(sess, ckpt.model_checkpoint_path)
                self._sess = sess 
開發者ID:skyoung,項目名稱:MemTrack,代碼行數:40,代碼來源:tracker.py

示例9: plot_latent_space

# 需要導入模塊: import model [as 別名]
# 或者: from model import build_model [as 別名]
def plot_latent_space(weightsfile):
    print('building model')
    layers = model.build_model()
    batch_size = 128
    decoder_func = theano_funcs.create_decoder_func(layers)

    print('loading weights from %s' % (weightsfile))
    model.load_weights([
        layers['l_decoder_out'],
        layers['l_discriminator_out'],
    ], weightsfile)

    # regularly-spaced grid of points sampled from p(z)
    Z = np.mgrid[2:-2.2:-0.2, -2:2.2:0.2].reshape(2, -1).T[:, ::-1].astype(np.float32)

    reconstructions = []
    print('generating samples')
    for idx in get_batch_idx(Z.shape[0], batch_size):
        Z_batch = Z[idx]
        X_batch = decoder_func(Z_batch)
        reconstructions.append(X_batch)

    X = np.vstack(reconstructions)
    X = X.reshape(X.shape[0], 28, 28)

    fig = plt.figure(1, (12., 12.))
    ax1 = plt.axes(frameon=False)
    ax1.get_xaxis().set_visible(False)
    ax1.get_yaxis().set_visible(False)
    plt.title('samples generated from latent space of autoencoder')
    grid = ImageGrid(
        fig, 111, nrows_ncols=(21, 21),
        share_all=True)

    print('plotting latent space')
    for i, x in enumerate(X):
        img = (x * 255).astype(np.uint8)
        grid[i].imshow(img, cmap='Greys_r')
        grid[i].get_xaxis().set_visible(False)
        grid[i].get_yaxis().set_visible(False)
        grid[i].set_frame_on(False)

    plt.savefig('latent_train_val.png', bbox_inches='tight') 
開發者ID:hjweide,項目名稱:adversarial-autoencoder,代碼行數:45,代碼來源:plot.py

示例10: run

# 需要導入模塊: import model [as 別名]
# 或者: from model import build_model [as 別名]
def run(self):
        # set enviornment
        os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
        os.environ["CUDA_VISIBLE_DEVICES"] = str(self.gpuid)
        print("InferenceWorker init, GPU ID: {}".format(self.gpuid))

        from model import build_model

        # load models
        model_weights_path = 'models/model.00-0.0296.hdf5'
        model = build_model()
        model.load_weights(model_weights_path)

        while True:
            try:
                try:
                    item = self.in_queue.get(block=False)
                except queue.Empty:
                    continue

                image_name_0, image_name_1, image_name_2 = item

                filename = os.path.join(image_folder, image_name_0)
                image_bgr = cv.imread(filename)
                image_bgr = cv.resize(image_bgr, (img_size, img_size), cv.INTER_CUBIC)
                image_rgb = cv.cvtColor(image_bgr, cv.COLOR_BGR2RGB)
                image_rgb_0 = preprocess_input(image_rgb)
                filename = os.path.join(image_folder, image_name_1)
                image_bgr = cv.imread(filename)
                image_bgr = cv.resize(image_bgr, (img_size, img_size), cv.INTER_CUBIC)
                image_rgb = cv.cvtColor(image_bgr, cv.COLOR_BGR2RGB)
                image_rgb_1 = preprocess_input(image_rgb)
                filename = os.path.join(image_folder, image_name_2)
                image_bgr = cv.imread(filename)
                image_bgr = cv.resize(image_bgr, (img_size, img_size), cv.INTER_CUBIC)
                image_rgb = cv.cvtColor(image_bgr, cv.COLOR_BGR2RGB)
                image_rgb_2 = preprocess_input(image_rgb)

                batch_inputs = np.empty((3, 1, img_size, img_size, 3), dtype=np.float32)
                batch_inputs[0] = image_rgb_0
                batch_inputs[1] = image_rgb_1
                batch_inputs[2] = image_rgb_2
                y_pred = model.predict([batch_inputs[0], batch_inputs[1], batch_inputs[2]])

                a = y_pred[0, 0:128]
                p = y_pred[0, 128:256]
                n = y_pred[0, 256:384]

                self.out_queue.put({'image_name': image_name_0, 'embedding': a})
                self.out_queue.put({'image_name': image_name_1, 'embedding': p})
                self.out_queue.put({'image_name': image_name_2, 'embedding': n})
                if self.in_queue.qsize() == 0:
                    break
            except Exception as e:
                print(e)

        import keras.backend as K
        K.clear_session()
        print('InferenceWorker done, GPU ID {}'.format(self.gpuid)) 
開發者ID:foamliu,項目名稱:FaceNet,代碼行數:61,代碼來源:inference.py

示例11: run

# 需要導入模塊: import model [as 別名]
# 或者: from model import build_model [as 別名]
def run(self):
        # set enviornment
        os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
        os.environ["CUDA_VISIBLE_DEVICES"] = str(self.gpuid)
        print("InferenceWorker init, GPU ID: {}".format(self.gpuid))

        from model import build_model

        # load models
        model = build_model()
        model.load_weights(get_best_model())

        while True:
            try:
                sample = {}
                try:
                    sample['a'] = self.in_queue.get(block=False)
                    sample['p'] = self.in_queue.get(block=False)
                    sample['n'] = self.in_queue.get(block=False)
                except queue.Empty:
                    break

                batch_inputs = np.empty((3, 1, img_size, img_size, channel), dtype=np.float32)

                for j, role in enumerate(['a', 'p', 'n']):
                    image_name = sample[role]
                    filename = os.path.join(image_folder, image_name)
                    image_bgr = cv.imread(filename)
                    image_bgr = cv.resize(image_bgr, (img_size, img_size), cv.INTER_CUBIC)
                    image_rgb = cv.cvtColor(image_bgr, cv.COLOR_BGR2RGB)
                    batch_inputs[j, 0] = preprocess_input(image_rgb)

                y_pred = model.predict([batch_inputs[0], batch_inputs[1], batch_inputs[2]])
                a = y_pred[0, 0:128]
                p = y_pred[0, 128:256]
                n = y_pred[0, 256:384]

                self.out_queue.put({'image_name': sample['a'], 'embedding': a})
                self.out_queue.put({'image_name': sample['p'], 'embedding': p})
                self.out_queue.put({'image_name': sample['n'], 'embedding': n})
                self.signal_queue.put(SENTINEL)

                if self.in_queue.qsize() == 0:
                    break
            except Exception as e:
                print(e)

        import keras.backend as K
        K.clear_session()
        print('InferenceWorker done, GPU ID {}'.format(self.gpuid)) 
開發者ID:foamliu,項目名稱:FaceNet,代碼行數:52,代碼來源:train_eval.py


注:本文中的model.build_model方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。