當前位置: 首頁>>代碼示例>>Python>>正文


Python bbox_transform.bbox_transform_inv方法代碼示例

本文整理匯總了Python中model.bbox_transform.bbox_transform_inv方法的典型用法代碼示例。如果您正苦於以下問題:Python bbox_transform.bbox_transform_inv方法的具體用法?Python bbox_transform.bbox_transform_inv怎麽用?Python bbox_transform.bbox_transform_inv使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在model.bbox_transform的用法示例。


在下文中一共展示了bbox_transform.bbox_transform_inv方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: im_detect

# 需要導入模塊: from model import bbox_transform [as 別名]
# 或者: from model.bbox_transform import bbox_transform_inv [as 別名]
def im_detect(net, im):
  blobs, im_scales = _get_blobs(im)
  assert len(im_scales) == 1, "Only single-image batch implemented"

  im_blob = blobs['data']
  blobs['im_info'] = np.array([im_blob.shape[1], im_blob.shape[2], im_scales[0]], dtype=np.float32)

  _, scores, bbox_pred, rois = net.test_image(blobs['data'], blobs['im_info'])
  
  boxes = rois[:, 1:5] / im_scales[0]
  scores = np.reshape(scores, [scores.shape[0], -1])
  bbox_pred = np.reshape(bbox_pred, [bbox_pred.shape[0], -1])
  if cfg.TEST.BBOX_REG:
    # Apply bounding-box regression deltas
    box_deltas = bbox_pred
    pred_boxes = bbox_transform_inv(torch.from_numpy(boxes), torch.from_numpy(box_deltas)).numpy()
    pred_boxes = _clip_boxes(pred_boxes, im.shape)
  else:
    # Simply repeat the boxes, once for each class
    pred_boxes = np.tile(boxes, (1, scores.shape[1]))

  return scores, pred_boxes 
開發者ID:yxgeee,項目名稱:pytorch-FPN,代碼行數:24,代碼來源:test.py

示例2: im_detect

# 需要導入模塊: from model import bbox_transform [as 別名]
# 或者: from model.bbox_transform import bbox_transform_inv [as 別名]
def im_detect(sess, net, im):
  blobs, im_scales = _get_blobs(im)
  assert len(im_scales) == 1, "Only single-image batch implemented"

  im_blob = blobs['data']
  blobs['im_info'] = np.array([im_blob.shape[1], im_blob.shape[2], im_scales[0]], dtype=np.float32)

  _, scores, bbox_pred, rois = net.test_image(sess, blobs['data'], blobs['im_info'])
  
  boxes = rois[:, 1:5] / im_scales[0]
  scores = np.reshape(scores, [scores.shape[0], -1])
  bbox_pred = np.reshape(bbox_pred, [bbox_pred.shape[0], -1])
  if cfg.TEST.BBOX_REG:
    # Apply bounding-box regression deltas
    box_deltas = bbox_pred
    pred_boxes = bbox_transform_inv(boxes, box_deltas)
    pred_boxes = _clip_boxes(pred_boxes, im.shape)
  else:
    # Simply repeat the boxes, once for each class
    pred_boxes = np.tile(boxes, (1, scores.shape[1]))

  return scores, pred_boxes 
開發者ID:endernewton,項目名稱:tf-faster-rcnn,代碼行數:24,代碼來源:test.py

示例3: proposal_top_layer

# 需要導入模塊: from model import bbox_transform [as 別名]
# 或者: from model.bbox_transform import bbox_transform_inv [as 別名]
def proposal_top_layer(rpn_cls_prob, rpn_bbox_pred, im_info, _feat_stride, anchors, num_anchors):
  """A layer that just selects the top region proposals
     without using non-maximal suppression,
     For details please see the technical report
  """
  rpn_top_n = cfg.TEST.RPN_TOP_N

  scores = rpn_cls_prob[:, :, :, num_anchors:]

  rpn_bbox_pred = rpn_bbox_pred.view(-1, 4)
  scores = scores.contiguous().view(-1, 1)

  length = scores.size(0)
  if length < rpn_top_n:
    # Random selection, maybe unnecessary and loses good proposals
    # But such case rarely happens
    top_inds = torch.from_numpy(npr.choice(length, size=rpn_top_n, replace=True)).long().cuda()
  else:
    top_inds = scores.sort(0, descending=True)[1]
    top_inds = top_inds[:rpn_top_n]
    top_inds = top_inds.view(rpn_top_n)

  # Do the selection here
  anchors = anchors[top_inds, :].contiguous()
  rpn_bbox_pred = rpn_bbox_pred[top_inds, :].contiguous()
  scores = scores[top_inds].contiguous()

  # Convert anchors into proposals via bbox transformations
  proposals = bbox_transform_inv(anchors, rpn_bbox_pred)

  # Clip predicted boxes to image
  proposals = clip_boxes(proposals, im_info[:2])

  # Output rois blob
  # Our RPN implementation only supports a single input image, so all
  # batch inds are 0
  batch_inds = proposals.data.new(proposals.size(0), 1).zero_()
  blob = torch.cat([batch_inds, proposals], 1)
  return blob, scores 
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:41,代碼來源:proposal_top_layer.py

示例4: proposal_layer

# 需要導入模塊: from model import bbox_transform [as 別名]
# 或者: from model.bbox_transform import bbox_transform_inv [as 別名]
def proposal_layer(rpn_cls_prob, rpn_bbox_pred, im_info, cfg_key, _feat_stride, anchors, num_anchors):
  """A simplified version compared to fast/er RCNN
     For details please see the technical report
  """
  if type(cfg_key) == bytes:
      cfg_key = cfg_key.decode('utf-8')
  pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N
  post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N
  nms_thresh = cfg[cfg_key].RPN_NMS_THRESH

  # Get the scores and bounding boxes
  scores = rpn_cls_prob[:, :, :, num_anchors:]
  rpn_bbox_pred = rpn_bbox_pred.view((-1, 4))
  scores = scores.contiguous().view(-1, 1)
  proposals = bbox_transform_inv(anchors, rpn_bbox_pred)
  proposals = clip_boxes(proposals, im_info[:2])

  # Pick the top region proposals
  scores, order = scores.view(-1).sort(descending=True)
  if pre_nms_topN > 0:
    order = order[:pre_nms_topN]
    scores = scores[:pre_nms_topN].view(-1, 1)
  proposals = proposals[order.data, :]

  # Non-maximal suppression
  keep = nms(torch.cat((proposals, scores), 1).data, nms_thresh)

  # Pick th top region proposals after NMS
  if post_nms_topN > 0:
    keep = keep[:post_nms_topN]
  proposals = proposals[keep, :]
  scores = scores[keep,]

  # Only support single image as input
  batch_inds = Variable(proposals.data.new(proposals.size(0), 1).zero_())
  blob = torch.cat((batch_inds, proposals), 1)

  return blob, scores 
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:40,代碼來源:proposal_layer.py

示例5: proposal_top_layer

# 需要導入模塊: from model import bbox_transform [as 別名]
# 或者: from model.bbox_transform import bbox_transform_inv [as 別名]
def proposal_top_layer(rpn_cls_prob, rpn_bbox_pred, im_info, _feat_stride, anchors, num_anchors):
  """A layer that just selects the top region proposals
     without using non-maximal suppression,
     For details please see the technical report
  """
  rpn_top_n = cfg.TEST.RPN_TOP_N

  scores = rpn_cls_prob[:, :, :, num_anchors:]

  rpn_bbox_pred = rpn_bbox_pred.reshape((-1, 4))
  scores = scores.reshape((-1, 1))

  length = scores.shape[0]
  if length < rpn_top_n:
    # Random selection, maybe unnecessary and loses good proposals
    # But such case rarely happens
    top_inds = npr.choice(length, size=rpn_top_n, replace=True)
  else:
    top_inds = scores.argsort(0)[::-1]
    top_inds = top_inds[:rpn_top_n]
    top_inds = top_inds.reshape(rpn_top_n, )

  # Do the selection here
  anchors = anchors[top_inds, :]
  rpn_bbox_pred = rpn_bbox_pred[top_inds, :]
  scores = scores[top_inds]

  # Convert anchors into proposals via bbox transformations
  proposals = bbox_transform_inv(anchors, rpn_bbox_pred)

  # Clip predicted boxes to image
  proposals = clip_boxes(proposals, im_info[:2])

  # Output rois blob
  # Our RPN implementation only supports a single input image, so all
  # batch inds are 0
  batch_inds = np.zeros((proposals.shape[0], 1), dtype=np.float32)
  blob = np.hstack((batch_inds, proposals.astype(np.float32, copy=False)))
  return blob, scores 
開發者ID:wanjinchang,項目名稱:SSH-TensorFlow,代碼行數:41,代碼來源:proposal_top_layer.py

示例6: proposal_top_layer

# 需要導入模塊: from model import bbox_transform [as 別名]
# 或者: from model.bbox_transform import bbox_transform_inv [as 別名]
def proposal_top_layer(rpn_cls_prob, rpn_bbox_pred, im_info, anchors, num_anchors):
    """A layer that just selects the top region proposals
       without using non-maximal suppression,
       For details please see the technical report
    """
    rpn_top_n = cfg.TEST.RPN_TOP_N

    scores = rpn_cls_prob[:, :, :, num_anchors:]

    rpn_bbox_pred = rpn_bbox_pred.reshape((-1, 4))
    scores = scores.reshape((-1, 1))

    length = scores.shape[0]
    if length < rpn_top_n:
        # Random selection, maybe unnecessary and loses good proposals
        # But such case rarely happens
        top_inds = npr.choice(length, size=rpn_top_n, replace=True)
    else:
        top_inds = scores.argsort(0)[::-1]
        top_inds = top_inds[:rpn_top_n]
        top_inds = top_inds.reshape(rpn_top_n, )

    # Do the selection here
    anchors = anchors[top_inds, :]
    rpn_bbox_pred = rpn_bbox_pred[top_inds, :]
    scores = scores[top_inds]

    # Convert anchors into proposals via bbox transformations
    proposals = bbox_transform_inv(anchors, rpn_bbox_pred)

    # Clip predicted boxes to image
    proposals = clip_boxes(proposals, im_info[:2])

    # Output rois blob
    # Our RPN implementation only supports a single input image, so all
    # batch inds are 0
    batch_inds = np.zeros((proposals.shape[0], 1), dtype=np.float32)
    blob = np.hstack((batch_inds, proposals.astype(np.float32, copy=False)))
    return blob, scores 
開發者ID:Sanster,項目名稱:tf_ctpn,代碼行數:41,代碼來源:proposal_top_layer.py

示例7: im_detect

# 需要導入模塊: from model import bbox_transform [as 別名]
# 或者: from model.bbox_transform import bbox_transform_inv [as 別名]
def im_detect(sess, net, im):
  blobs, im_scales = _get_blobs(im)
  assert len(im_scales) == 1, "Only single-image batch implemented"

  im_blob = blobs['data']
  # seems to have height, width, and image scales
  # still not sure about the scale, maybe full image it is 1.
  blobs['im_info'] = np.array([[im_blob.shape[1], im_blob.shape[2], im_scales[0]]], dtype=np.float32)
  try:
    scores1, scores, bbox_pred, rois,feat,s = net.test_image(sess, blobs['data'], blobs['im_info'])
  except:
    scores1, scores, bbox_pred, rois,feat,s = net.test_image(sess, blobs['data'],blobs['noise'], blobs['im_info'])
  boxes = rois[:, 1:5] / im_scales[0]
  # print(scores.shape, bbox_pred.shape, rois.shape, boxes.shape)
  scores = np.reshape(scores, [scores.shape[0], -1])
  bbox_pred = np.reshape(bbox_pred, [bbox_pred.shape[0], -1])
  if cfg.TEST.BBOX_REG:
    # Apply bounding-box regression deltas
    box_deltas = bbox_pred
    pred_boxes = bbox_transform_inv(boxes, box_deltas)
    pred_boxes = _clip_boxes(pred_boxes, im.shape)
  else:
    # Simply repeat the boxes, once for each class
    pred_boxes = np.tile(boxes, (1, scores.shape[1]))

  return scores, pred_boxes,feat,s 
開發者ID:pengzhou1108,項目名稱:RGB-N,代碼行數:28,代碼來源:test.py

示例8: proposal_top_layer

# 需要導入模塊: from model import bbox_transform [as 別名]
# 或者: from model.bbox_transform import bbox_transform_inv [as 別名]
def proposal_top_layer(rpn_cls_prob, rpn_bbox_pred, im_info, _feat_stride, anchors, num_anchors):
  """A layer that just selects the top region proposals
     without using non-maximal suppression,
     For details please see the technical report
  """
  rpn_top_n = cfg.TEST.RPN_TOP_N
  im_info = im_info[0]

  scores = rpn_cls_prob[:, :, :, num_anchors:]

  rpn_bbox_pred = rpn_bbox_pred.reshape((-1, 4))
  scores = scores.reshape((-1, 1))

  length = scores.shape[0]
  if length < rpn_top_n:
    # Random selection, maybe unnecessary and loses good proposals
    # But such case rarely happens
    top_inds = npr.choice(length, size=rpn_top_n, replace=True)
  else:
    top_inds = scores.argsort(0)[::-1]
    top_inds = top_inds[:rpn_top_n]
    top_inds = top_inds.reshape(rpn_top_n, )

  # Do the selection here
  anchors = anchors[top_inds, :]
  rpn_bbox_pred = rpn_bbox_pred[top_inds, :]
  scores = scores[top_inds]

  # Convert anchors into proposals via bbox transformations
  proposals = bbox_transform_inv(anchors, rpn_bbox_pred)

  # Clip predicted boxes to image
  proposals = clip_boxes(proposals, im_info[:2])

  # Output rois blob
  # Our RPN implementation only supports a single input image, so all
  # batch inds are 0
  batch_inds = np.zeros((proposals.shape[0], 1), dtype=np.float32)
  blob = np.hstack((batch_inds, proposals.astype(np.float32, copy=False)))
  return blob, scores 
開發者ID:pengzhou1108,項目名稱:RGB-N,代碼行數:42,代碼來源:proposal_top_layer.py

示例9: proposal_layer

# 需要導入模塊: from model import bbox_transform [as 別名]
# 或者: from model.bbox_transform import bbox_transform_inv [as 別名]
def proposal_layer(rpn_cls_prob, rpn_bbox_pred, im_info, cfg_key, _feat_stride, anchors, num_anchors):
  """A simplified version compared to fast/er RCNN
     For details please see the technical report
  """
  if type(cfg_key) == bytes:
      cfg_key = cfg_key.decode('utf-8')
  pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N
  post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N
  nms_thresh = cfg[cfg_key].RPN_NMS_THRESH

  im_info = im_info[0]
  # Get the scores and bounding boxes
  scores = rpn_cls_prob[:, :, :, num_anchors:]
  rpn_bbox_pred = rpn_bbox_pred.reshape((-1, 4))
  scores = scores.reshape((-1, 1))
  proposals = bbox_transform_inv(anchors, rpn_bbox_pred)
  proposals = clip_boxes(proposals, im_info[:2])

  # Pick the top region proposals
  order = scores.ravel().argsort()[::-1]
  if pre_nms_topN > 0:
    order = order[:pre_nms_topN]
  proposals = proposals[order, :]
  scores = scores[order]

  # Non-maximal suppression
  keep = nms(np.hstack((proposals, scores)), nms_thresh)

  # Pick th top region proposals after NMS
  if post_nms_topN > 0:
    keep = keep[:post_nms_topN]
  proposals = proposals[keep, :]
  scores = scores[keep]

  # Only support single image as input
  batch_inds = np.zeros((proposals.shape[0], 1), dtype=np.float32)
  blob = np.hstack((batch_inds, proposals.astype(np.float32, copy=False)))

  return blob, scores 
開發者ID:pengzhou1108,項目名稱:RGB-N,代碼行數:41,代碼來源:proposal_layer.py

示例10: proposal_layer

# 需要導入模塊: from model import bbox_transform [as 別名]
# 或者: from model.bbox_transform import bbox_transform_inv [as 別名]
def proposal_layer(rpn_cls_prob, rpn_bbox_pred, im_info, cfg_key, _feat_stride, anchors, num_anchors):
  """A simplified version compared to fast/er RCNN
     For details please see the technical report
  """
  if type(cfg_key) == bytes:
      cfg_key = cfg_key.decode('utf-8')
  pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N
  post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N
  nms_thresh = cfg[cfg_key].RPN_NMS_THRESH

  # Get the scores and bounding boxes
  scores = rpn_cls_prob[:, :, :, num_anchors:]
  rpn_bbox_pred = rpn_bbox_pred.reshape((-1, 4))
  scores = scores.reshape((-1, 1))
  proposals = bbox_transform_inv(anchors, rpn_bbox_pred)
  proposals = clip_boxes(proposals, im_info[:2])

  # Pick the top region proposals
  order = scores.ravel().argsort()[::-1]
  if pre_nms_topN > 0:
    order = order[:pre_nms_topN]
  proposals = proposals[order, :]
  scores = scores[order]

  # Non-maximal suppression
  keep = nms(np.hstack((proposals, scores)), nms_thresh)

  # Pick th top region proposals after NMS
  if post_nms_topN > 0:
    keep = keep[:post_nms_topN]
  proposals = proposals[keep, :]
  scores = scores[keep]

  # Only support single image as input
  batch_inds = np.zeros((proposals.shape[0], 1), dtype=np.float32)
  blob = np.hstack((batch_inds, proposals.astype(np.float32, copy=False)))

  return blob, scores 
開發者ID:endernewton,項目名稱:tf-faster-rcnn,代碼行數:40,代碼來源:proposal_layer.py

示例11: proposal_layer

# 需要導入模塊: from model import bbox_transform [as 別名]
# 或者: from model.bbox_transform import bbox_transform_inv [as 別名]
def proposal_layer(rpn_cls_prob, rpn_bbox_pred, im_info, cfg_key, _feat_stride, anchors, num_anchors):
  """A simplified version compared to fast/er RCNN
     For details please see the technical report
  """
  if type(cfg_key) == bytes:
      cfg_key = cfg_key.decode('utf-8')
  pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N
  post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N
  nms_thresh = cfg[cfg_key].RPN_NMS_THRESH

  # Get the scores and bounding boxes
  scores = rpn_cls_prob[:, :, :, num_anchors:]
  rpn_bbox_pred = rpn_bbox_pred.view((-1, 4))
  scores = scores.contiguous().view(-1, 1)
  proposals = bbox_transform_inv(anchors, rpn_bbox_pred)
  proposals = clip_boxes(proposals, im_info[:2])

  # Pick the top region proposals
  scores, order = scores.view(-1).sort(descending=True)
  if pre_nms_topN > 0:
    order = order[:pre_nms_topN]
    scores = scores[:pre_nms_topN].view(-1, 1)
  proposals = proposals[order.data, :]

  # Non-maximal suppression
  keep = nms(torch.cat((proposals, scores), 1).data, nms_thresh)

  # Pick th top region proposals after NMS
  if post_nms_topN > 0:
    keep = keep[:post_nms_topN]
  proposals = proposals[keep, :]  # test(300,4)
  scores = scores[keep,]

  # Our RPN implementation only supports a single input image,
  # so all batch inds are 0
  # 即這些roi都屬於一個圖片,如果後續實現了多個輸入圖片,這個roi要區分它屬於哪一個圖片(即哪一個batch)
  batch_inds = Variable(proposals.data.new(proposals.size(0), 1).zero_())
  blob = torch.cat((batch_inds, proposals), 1)

  return blob, scores 
開發者ID:Sundrops,項目名稱:pytorch-faster-rcnn,代碼行數:42,代碼來源:proposal_layer.py

示例12: proposal_layer_fpn

# 需要導入模塊: from model import bbox_transform [as 別名]
# 或者: from model.bbox_transform import bbox_transform_inv [as 別名]
def proposal_layer_fpn(rpn_cls_prob, rpn_bbox_pred, im_info, cfg_key, _feat_stride, anchors, num_anchors):
  """A simplified version compared to fast/er RCNN
     For details please see the technical report
  """
  if type(cfg_key) == bytes:
      cfg_key = cfg_key.decode('utf-8')
  pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N
  post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N
  nms_thresh = cfg[cfg_key].RPN_NMS_THRESH

  proposals_total = []
  scores_total = []
  for idx in range(len(rpn_cls_prob)):
    # Get the scores and bounding boxes
    scores = rpn_cls_prob[idx][:, :, :, num_anchors:]
    rpn_bbox_pred[idx] = rpn_bbox_pred[idx].view((-1, 4))
    scores = scores.contiguous().view(-1, 1)
    proposals = bbox_transform_inv(anchors[idx], rpn_bbox_pred[idx])
    proposals = clip_boxes(proposals, im_info[:2])
    
    # Pick the top region proposals
    scores, order = scores.view(-1).sort(descending=True)
    if pre_nms_topN > 0:
      order = order[:pre_nms_topN]
      scores = scores[:pre_nms_topN].view(-1, 1)
    proposals = proposals[order.data, :]

    proposals_total.append(proposals)
    scores_total.append(scores)

  proposals = torch.cat(proposals_total)
  scores = torch.cat(scores_total)

  # Non-maximal suppression
  keep = nms(torch.cat((proposals, scores), 1).data, nms_thresh)

  # Pick th top region proposals after NMS
  if post_nms_topN > 0:
    keep = keep[:post_nms_topN]
  proposals = proposals[keep, :]
  scores = scores[keep,]

  # Only support single image as input
  batch_inds = Variable(proposals.data.new(proposals.size(0), 1).zero_())
  blob = torch.cat((batch_inds, proposals), 1)

  return blob, scores 
開發者ID:yxgeee,項目名稱:pytorch-FPN,代碼行數:49,代碼來源:proposal_layer.py

示例13: proposal_layer

# 需要導入模塊: from model import bbox_transform [as 別名]
# 或者: from model.bbox_transform import bbox_transform_inv [as 別名]
def proposal_layer(rpn_cls_prob, rpn_bbox_pred, im_info, cfg_key, _feat_stride, anchors, num_anchors):
    """A simplified version compared to fast/er RCNN
       For details please see the technical report
    """
    if type(cfg_key) == bytes:
        cfg_key = cfg_key.decode('utf-8')
    pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N
    post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N
    nms_thresh = cfg[cfg_key].RPN_NMS_THRESH
    min_size = cfg[cfg_key].ANCHOR_MIN_SIZE

    # Get the scores and bounding boxes
    scores = rpn_cls_prob[:, :, :, num_anchors:]
    rpn_bbox_pred = rpn_bbox_pred.reshape((-1, 4))
    scores = scores.reshape((-1, 1))
    proposals = bbox_transform_inv(anchors, rpn_bbox_pred)
    proposals = clip_boxes(proposals, im_info[:2])

    # removed predicted boxes with either height or width < threshold
    # (NOTE: convert min_size to input image scale stored in im_info[2])
    # keep = _filter_boxes(proposals, min_size * im_info[2])
    # proposals = proposals[keep, :]
    # scores = scores[keep]

    # Pick the top region proposals
    order = scores.ravel().argsort()[::-1]
    if pre_nms_topN > 0:
        order = order[:pre_nms_topN]
    proposals = proposals[order, :]
    scores = scores[order]

    # Non-maximal suppression
    keep = nms(np.hstack((proposals, scores)), nms_thresh)

    # Pick th top region proposals after NMS
    if post_nms_topN > 0:
        keep = keep[:post_nms_topN]
    proposals = proposals[keep, :]
    scores = scores[keep]

    # Only support single image as input
    batch_inds = np.zeros((proposals.shape[0], 1), dtype=np.float32)
    blob = np.hstack((batch_inds, proposals.astype(np.float32, copy=False)))

    return blob, scores 
開發者ID:wanjinchang,項目名稱:SSH-TensorFlow,代碼行數:47,代碼來源:proposal_layer.py

示例14: proposal_layer

# 需要導入模塊: from model import bbox_transform [as 別名]
# 或者: from model.bbox_transform import bbox_transform_inv [as 別名]
def proposal_layer(rpn_cls_prob, rpn_bbox_pred, im_info, cfg_key, anchors, num_anchors):
    """
    A simplified version compared to fast/er RCNN
    For details please see the technical report
    :param
      rpn_cls_prob: (1, H, W, Ax2) softmax result of rpn scores
      rpn_bbox_pred: (1, H, W, Ax4) 1x1 conv result for rpn bbox
    """
    if type(cfg_key) == bytes:
        cfg_key = cfg_key.decode('utf-8')
    pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N
    post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N
    nms_thresh = cfg[cfg_key].RPN_NMS_THRESH

    # Get the scores and bounding boxes for foreground (text)
    # The order in last dim is related to network.py:
    # self._reshape_layer(rpn_cls_prob_reshape, self._num_anchors * 2, "rpn_cls_prob")
    # scores = rpn_cls_prob[:, :, :, num_anchors:] # old

    height, width = rpn_cls_prob.shape[1:3]  # feature-map的高寬
    scores = np.reshape(np.reshape(rpn_cls_prob, [1, height, width, num_anchors, 2])[:, :, :, :, 1],
                        [1, height, width, num_anchors])

    rpn_bbox_pred = rpn_bbox_pred.reshape((-1, 4))
    scores = scores.reshape((-1, 1))
    proposals = bbox_transform_inv(anchors, rpn_bbox_pred)
    proposals = clip_boxes(proposals, im_info[:2])

    # Pick the top region proposals
    order = scores.ravel().argsort()[::-1]
    if pre_nms_topN > 0:
        order = order[:pre_nms_topN]
    proposals = proposals[order, :]
    scores = scores[order]

    # Non-maximal suppression
    keep = nms(np.hstack((proposals, scores)), nms_thresh, not cfg.USE_GPU_NMS)

    # Pick th top region proposals after NMS
    if post_nms_topN > 0:
        keep = keep[:post_nms_topN]
    proposals = proposals[keep, :]
    scores = scores[keep]

    # Only support single image as input
    blob = np.hstack((scores.astype(np.float32, copy=False), proposals.astype(np.float32, copy=False)))
    return blob, scores 
開發者ID:Sanster,項目名稱:tf_ctpn,代碼行數:49,代碼來源:proposal_layer.py

示例15: im_detect

# 需要導入模塊: from model import bbox_transform [as 別名]
# 或者: from model.bbox_transform import bbox_transform_inv [as 別名]
def im_detect(net, im, label=None):
  #im = cv2.imread(imdb.image_path_at(i))
  ori_img = im.copy()
  blobs, im_scales = _get_blobs(im)
  assert len(im_scales) == 1, "Only single-image batch implemented"

  im_blob = blobs['data']
  blobs['im_info'] = np.array([im_blob.shape[1], im_blob.shape[2], im_scales[0]], dtype=np.float32)

  # scores(300,num_classes) bbox_pred(300, num_classes*4) rois(300,4)
  # 對於300個roi,每個roi 4個值 x1 y1 x2 y2
  # score是對於每個roi,屬於各個類別的概率(經過softmax後)(0.1 0.2 0.1.....)
  # bbox_pred是每個roi對於每個類別的坐標偏移 即同一個roi經過不同的偏移後可以屬於多個類別
  if cfg.DO_PARSING:
    _, scores, bbox_pred, rois, mask_score_map = net.test_image(blobs['data'], blobs['im_info'])
  else:
    _, scores, bbox_pred, rois = net.test_image(blobs['data'], blobs['im_info'])

  # for i in range(rois.shape[0]):
  #   box = rois[i, 1:5] / im_scales[0]
  #   box = box.astype(np.int64)
  #   proposal = ori_img[box[1]:box[3],box[0]:box[2],:]
  #   cv2.imwrite('/media/rgh/rgh-data/Dataset/CVPR2018/Lip/rois/val/'+str(i)+'.png',proposal)
  # print(rois.shape)
  # print(rois[0:10,:])

  boxes = rois[:, 1:5] / im_scales[0]  # (300,num_classes)
  scores = np.reshape(scores, [scores.shape[0], -1])  # (300,num_classes)
  bbox_pred = np.reshape(bbox_pred, [bbox_pred.shape[0], -1])  # (300, num_classes*4)
  if cfg.TEST.BBOX_REG:
    # Apply bounding-box regression deltas
    box_deltas = bbox_pred
    # 每個roi對於不同類別進行對應偏移
    pred_boxes = bbox_transform_inv(torch.from_numpy(boxes), torch.from_numpy(box_deltas)).numpy()
    pred_boxes = _clip_boxes(pred_boxes, im.shape)  # (300, num_classes*4)
  else:
    # Simply repeat the boxes, once for each class
    pred_boxes = np.tile(boxes, (1, scores.shape[1]))  # test時不再回歸了  (300, num_classes*4)
  # for i in range(pred_boxes.shape[0]):
  #   for j in range(1,12):
  #     if scores[i][j] > 0:
  #       proposal = ori_img[int(pred_boxes[i][j*4+1]):int(pred_boxes[i][j*4+3]),
  #                  int(pred_boxes[i][j * 4 + 0]):int(pred_boxes[i][j*4+2]), :]
  #       cv2.imwrite('/media/rgh/rgh-data/Dataset/CVPR2018/Lip/rois/val/' + str(i)+'_'+str(j) + '_'+str(scores[i][j])+ '.png', proposal)
  # # for i in range(rois.shape[0]):
  #   box = rois[i, 1:5] / im_scales[0]
  #   box = box.astype(np.int64)
  #   proposal = ori_img[box[1]:box[3],box[0]:box[2],:]
  #   cv2.imwrite('/media/rgh/rgh-data/Dataset/CVPR2018/Lip/rois/val/'+str(i)+'.png',proposal)
  if cfg.DO_PARSING:
    return scores, pred_boxes, mask_score_map
  return scores, pred_boxes 
開發者ID:Sundrops,項目名稱:pytorch-faster-rcnn,代碼行數:54,代碼來源:test.py


注:本文中的model.bbox_transform.bbox_transform_inv方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。