當前位置: 首頁>>代碼示例>>Python>>正文


Python bbox_transform.bbox_transform方法代碼示例

本文整理匯總了Python中model.bbox_transform.bbox_transform方法的典型用法代碼示例。如果您正苦於以下問題:Python bbox_transform.bbox_transform方法的具體用法?Python bbox_transform.bbox_transform怎麽用?Python bbox_transform.bbox_transform使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在model.bbox_transform的用法示例。


在下文中一共展示了bbox_transform.bbox_transform方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _compute_targets

# 需要導入模塊: from model import bbox_transform [as 別名]
# 或者: from model.bbox_transform import bbox_transform [as 別名]
def _compute_targets(ex_rois, gt_rois, labels):
  """Compute bounding-box regression targets for an image."""
  # Inputs are tensor

  assert ex_rois.shape[0] == gt_rois.shape[0]
  assert ex_rois.shape[1] == 4
  assert gt_rois.shape[1] == 4
  #  返回roi相對與其匹配的gt (dx,dy,dw,dh)四個回歸值,shape(len(rois),4)
  targets = bbox_transform(ex_rois, gt_rois)
  if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
    #  是否歸一化
    #  Optionally normalize targets by a precomputed mean and stdev
    targets = ((targets - targets.new(cfg.TRAIN.BBOX_NORMALIZE_MEANS))
               / targets.new(cfg.TRAIN.BBOX_NORMALIZE_STDS))
  # labels.unsqueeze(1) -> (128, 1)
  return torch.cat(
    [labels.unsqueeze(1), targets], 1)  # (128, 5) 類別和4個回歸值 
開發者ID:Sundrops,項目名稱:pytorch-faster-rcnn,代碼行數:19,代碼來源:proposal_target_layer.py

示例2: _compute_targets

# 需要導入模塊: from model import bbox_transform [as 別名]
# 或者: from model.bbox_transform import bbox_transform [as 別名]
def _compute_targets(ex_rois, gt_rois, labels):
  """Compute bounding-box regression targets for an image."""
  # Inputs are tensor

  assert ex_rois.shape[0] == gt_rois.shape[0]
  assert ex_rois.shape[1] == 4
  assert gt_rois.shape[1] == 4

  targets = bbox_transform(ex_rois, gt_rois)
  if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
    # Optionally normalize targets by a precomputed mean and stdev
    targets = ((targets - targets.new(cfg.TRAIN.BBOX_NORMALIZE_MEANS))
               / targets.new(cfg.TRAIN.BBOX_NORMALIZE_STDS))
  return torch.cat(
    [labels.unsqueeze(1), targets], 1) 
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:17,代碼來源:proposal_target_layer.py

示例3: _compute_targets

# 需要導入模塊: from model import bbox_transform [as 別名]
# 或者: from model.bbox_transform import bbox_transform [as 別名]
def _compute_targets(ex_rois, gt_rois):
  """Compute bounding-box regression targets for an image."""

  assert ex_rois.shape[0] == gt_rois.shape[0]
  assert ex_rois.shape[1] == 4
  assert gt_rois.shape[1] == 5

  return bbox_transform(torch.from_numpy(ex_rois), torch.from_numpy(gt_rois[:, :4])).numpy() 
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:10,代碼來源:anchor_target_layer.py

示例4: _compute_targets

# 需要導入模塊: from model import bbox_transform [as 別名]
# 或者: from model.bbox_transform import bbox_transform [as 別名]
def _compute_targets(ex_rois, gt_rois):
    """Compute bounding-box regression targets for an image."""

    assert ex_rois.shape[0] == gt_rois.shape[0]
    assert ex_rois.shape[1] == 4
    assert gt_rois.shape[1] == 5

    return bbox_transform(ex_rois, gt_rois[:, :4]).astype(np.float32, copy=False) 
開發者ID:wanjinchang,項目名稱:SSH-TensorFlow,代碼行數:10,代碼來源:anchor_target_layer.py

示例5: _compute_targets

# 需要導入模塊: from model import bbox_transform [as 別名]
# 或者: from model.bbox_transform import bbox_transform [as 別名]
def _compute_targets(ex_rois, gt_rois):
    """Compute bounding-box regression targets for an image."""

    assert ex_rois.shape[0] == gt_rois.shape[0]
    assert ex_rois.shape[1] == 4
    assert gt_rois.shape[1] == 5

    targets = bbox_transform(ex_rois, gt_rois)

    return targets 
開發者ID:Sanster,項目名稱:tf_ctpn,代碼行數:12,代碼來源:anchor_target_layer.py

示例6: _compute_targets

# 需要導入模塊: from model import bbox_transform [as 別名]
# 或者: from model.bbox_transform import bbox_transform [as 別名]
def _compute_targets(ex_rois, gt_rois, labels):
  """Compute bounding-box regression targets for an image."""

  assert ex_rois.shape[0] == gt_rois.shape[0]
  assert ex_rois.shape[1] == 4
  assert gt_rois.shape[1] == 4

  targets = bbox_transform(ex_rois, gt_rois)
  if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
    # Optionally normalize targets by a precomputed mean and stdev
    targets = ((targets - np.array(cfg.TRAIN.BBOX_NORMALIZE_MEANS))
               / np.array(cfg.TRAIN.BBOX_NORMALIZE_STDS))
  return np.hstack(
    (labels[:, np.newaxis], targets)).astype(np.float32, copy=False) 
開發者ID:pengzhou1108,項目名稱:RGB-N,代碼行數:16,代碼來源:proposal_target_layer.py

示例7: _compute_targets

# 需要導入模塊: from model import bbox_transform [as 別名]
# 或者: from model.bbox_transform import bbox_transform [as 別名]
def _compute_targets(ex_rois, gt_rois):
  """Compute bounding-box regression targets for an image."""

  assert ex_rois.shape[0] == gt_rois.shape[0]
  assert ex_rois.shape[1] == 4
  assert gt_rois.shape[1] == 5

  return bbox_transform(ex_rois, gt_rois[:, :4]).astype(np.float32, copy=False) 
開發者ID:pengzhou1108,項目名稱:RGB-N,代碼行數:10,代碼來源:anchor_target_layer.py

示例8: _compute_targets

# 需要導入模塊: from model import bbox_transform [as 別名]
# 或者: from model.bbox_transform import bbox_transform [as 別名]
def _compute_targets(ex_rois, gt_rois):
  """Compute bounding-box regression targets for an image."""

  assert ex_rois.shape[0] == gt_rois.shape[0]
  assert ex_rois.shape[1] == 4
  if cfg.SUB_CATEGORY:
    assert gt_rois.shape[1] == 6
  else:
    assert gt_rois.shape[1] == 5

  return bbox_transform(torch.from_numpy(ex_rois), torch.from_numpy(gt_rois[:, :4])).numpy() 
開發者ID:Sundrops,項目名稱:pytorch-faster-rcnn,代碼行數:13,代碼來源:anchor_target_layer.py


注:本文中的model.bbox_transform.bbox_transform方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。