當前位置: 首頁>>代碼示例>>Python>>正文


Python model.Seq2Seq方法代碼示例

本文整理匯總了Python中model.Seq2Seq方法的典型用法代碼示例。如果您正苦於以下問題:Python model.Seq2Seq方法的具體用法?Python model.Seq2Seq怎麽用?Python model.Seq2Seq使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在model的用法示例。


在下文中一共展示了model.Seq2Seq方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: decode_batch

# 需要導入模塊: import model [as 別名]
# 或者: from model import Seq2Seq [as 別名]
def decode_batch(batch: Batch, model: Seq2Seq, vocab: Vocab, criterion=None, *, pack_seq=True,
                 show_cover_loss=False) -> Tuple[List[List[str]], Seq2SeqOutput]:
  """Test the `model` on the `batch`, return the decoded textual tokens and the Seq2SeqOutput."""
  if not pack_seq:
    input_lengths = None
  else:
    input_lengths = batch.input_lengths
  with torch.no_grad():
    input_tensor = batch.input_tensor.to(DEVICE)
    if batch.target_tensor is None or criterion is None:
      target_tensor = None
    else:
      target_tensor = batch.target_tensor.to(DEVICE)
    out = model(input_tensor, target_tensor, input_lengths, criterion,
                ext_vocab_size=batch.ext_vocab_size, include_cover_loss=show_cover_loss)
    decoded_batch = decode_batch_output(out.decoded_tokens, vocab, batch.oov_dict)
  target_length = batch.target_tensor.size(0)
  out.loss_value /= target_length
  return decoded_batch, out 
開發者ID:ymfa,項目名稱:seq2seq-summarizer,代碼行數:21,代碼來源:test.py

示例2: eval_batch

# 需要導入模塊: import model [as 別名]
# 或者: from model import Seq2Seq [as 別名]
def eval_batch(batch: Batch, model: Seq2Seq, vocab: Vocab, criterion=None, *, pack_seq=True,
               show_cover_loss=False) -> Tuple[float, float]:
  """Test the `model` on the `batch`, return the ROUGE score and the loss."""
  decoded_batch, out = decode_batch(batch, model, vocab, criterion=criterion, pack_seq=pack_seq,
                                    show_cover_loss=show_cover_loss)
  examples = batch[0]
  gold_summaries = [ex.tgt for ex in examples]
  scores = rouge(gold_summaries, decoded_batch)
  return out.loss_value, scores[0]['l_f'] 
開發者ID:ymfa,項目名稱:seq2seq-summarizer,代碼行數:11,代碼來源:test.py

示例3: eval_bs

# 需要導入模塊: import model [as 別名]
# 或者: from model import Seq2Seq [as 別名]
def eval_bs(test_set: Dataset, vocab: Vocab, model: Seq2Seq, params: Params):
  test_gen = test_set.generator(1, vocab, None, True if params.pointer else False)
  n_samples = int(params.test_sample_ratio * len(test_set.pairs))

  if params.test_save_results and params.model_path_prefix:
    result_file = tarfile.open(params.model_path_prefix + ".results.tgz", 'w:gz')
  else:
    result_file = None

  model.eval()
  r1, r2, rl, rsu4 = 0, 0, 0, 0
  prog_bar = tqdm(range(1, n_samples + 1))
  for i in prog_bar:
    batch = next(test_gen)
    scores, file_content = eval_bs_batch(batch, model, vocab, pack_seq=params.pack_seq,
                                         beam_size=params.beam_size,
                                         min_out_len=params.min_out_len,
                                         max_out_len=params.max_out_len,
                                         len_in_words=params.out_len_in_words,
                                         details=result_file is not None)
    if file_content:
      file_content = file_content.encode('utf-8')
      file_info = tarfile.TarInfo(name='%06d.txt' % i)
      file_info.size = len(file_content)
      result_file.addfile(file_info, fileobj=BytesIO(file_content))
    if scores:
      r1 += scores[0]['1_f']
      r2 += scores[0]['2_f']
      rl += scores[0]['l_f']
      rsu4 += scores[0]['su4_f']
      prog_bar.set_postfix(R1='%.4g' % (r1 / i * 100), R2='%.4g' % (r2 / i * 100),
                           RL='%.4g' % (rl / i * 100), RSU4='%.4g' % (rsu4 / i * 100)) 
開發者ID:ymfa,項目名稱:seq2seq-summarizer,代碼行數:34,代碼來源:test.py

示例4: __init__

# 需要導入模塊: import model [as 別名]
# 或者: from model import Seq2Seq [as 別名]
def __init__(self, voc_path, train_dir):
        self.dialog = Dialog()
        self.dialog.load_vocab(voc_path)

        self.model = Seq2Seq(self.dialog.vocab_size)

        self.sess = tf.Session()
        ckpt = tf.train.get_checkpoint_state(train_dir)
        self.model.saver.restore(self.sess, ckpt.model_checkpoint_path) 
開發者ID:HYU-AILAB,項目名稱:ai-seminar,代碼行數:11,代碼來源:chat.py

示例5: train

# 需要導入模塊: import model [as 別名]
# 或者: from model import Seq2Seq [as 別名]
def train(dialog, batch_size=100, epoch=100):
    model = Seq2Seq(dialog.vocab_size)

    with tf.Session() as sess:
        # TODO: 세션을 로드하고 로그를 위한 summary 저장등의 로직을 Seq2Seq 모델로 넣을 필요가 있음
        ckpt = tf.train.get_checkpoint_state(FLAGS.train_dir)
        if ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path):
            print("다음 파일에서 모델을 읽는 중 입니다..", ckpt.model_checkpoint_path)
            model.saver.restore(sess, ckpt.model_checkpoint_path)
        else:
            print("새로운 모델을 생성하는 중 입니다.")
            sess.run(tf.global_variables_initializer())

        writer = tf.summary.FileWriter(FLAGS.log_dir, sess.graph)

        total_batch = int(math.ceil(len(dialog.examples)/float(batch_size)))

        for step in range(total_batch * epoch):
            enc_input, dec_input, targets = dialog.next_batch(batch_size)

            _, loss = model.train(sess, enc_input, dec_input, targets)

            if (step + 1) % 100 == 0:
                model.write_logs(sess, writer, enc_input, dec_input, targets)

                print('Step:', '%06d' % model.global_step.eval(),
                      'cost =', '{:.6f}'.format(loss))

        checkpoint_path = os.path.join(FLAGS.train_dir, FLAGS.ckpt_name)
        model.saver.save(sess, checkpoint_path, global_step=model.global_step)

    print('최적화 완료!') 
開發者ID:HYU-AILAB,項目名稱:ai-seminar,代碼行數:34,代碼來源:train.py

示例6: test

# 需要導入模塊: import model [as 別名]
# 或者: from model import Seq2Seq [as 別名]
def test(dialog, batch_size=100):
    print("\n=== 예측 테스트 ===")

    model = Seq2Seq(dialog.vocab_size)

    with tf.Session() as sess:
        ckpt = tf.train.get_checkpoint_state(FLAGS.train_dir)
        print("다음 파일에서 모델을 읽는 중 입니다..", ckpt.model_checkpoint_path)
        model.saver.restore(sess, ckpt.model_checkpoint_path)

        enc_input, dec_input, targets = dialog.next_batch(batch_size)

        expect, outputs, accuracy = model.test(sess, enc_input, dec_input, targets)

        expect = dialog.decode(expect)
        outputs = dialog.decode(outputs)

        pick = random.randrange(0, len(expect) / 2)
        input = dialog.decode([dialog.examples[pick * 2]], True)
        expect = dialog.decode([dialog.examples[pick * 2 + 1]], True)
        outputs = dialog.cut_eos(outputs[pick])

        print("\n정확도:", accuracy)
        print("랜덤 결과\n")
        print("    입력값:", input)
        print("    실제값:", expect)
        print("    예측값:", ' '.join(outputs)) 
開發者ID:HYU-AILAB,項目名稱:ai-seminar,代碼行數:29,代碼來源:train.py

示例7: main

# 需要導入模塊: import model [as 別名]
# 或者: from model import Seq2Seq [as 別名]
def main():
    args = parse_arguments()
    hidden_size = 512
    embed_size = 256
    assert torch.cuda.is_available()

    print("[!] preparing dataset...")
    train_iter, val_iter, test_iter, DE, EN = load_dataset(args.batch_size)
    de_size, en_size = len(DE.vocab), len(EN.vocab)
    print("[TRAIN]:%d (dataset:%d)\t[TEST]:%d (dataset:%d)"
          % (len(train_iter), len(train_iter.dataset),
             len(test_iter), len(test_iter.dataset)))
    print("[DE_vocab]:%d [en_vocab]:%d" % (de_size, en_size))

    print("[!] Instantiating models...")
    encoder = Encoder(de_size, embed_size, hidden_size,
                      n_layers=2, dropout=0.5)
    decoder = Decoder(embed_size, hidden_size, en_size,
                      n_layers=1, dropout=0.5)
    seq2seq = Seq2Seq(encoder, decoder).cuda()
    optimizer = optim.Adam(seq2seq.parameters(), lr=args.lr)
    print(seq2seq)

    best_val_loss = None
    for e in range(1, args.epochs+1):
        train(e, seq2seq, optimizer, train_iter,
              en_size, args.grad_clip, DE, EN)
        val_loss = evaluate(seq2seq, val_iter, en_size, DE, EN)
        print("[Epoch:%d] val_loss:%5.3f | val_pp:%5.2fS"
              % (e, val_loss, math.exp(val_loss)))

        # Save the model if the validation loss is the best we've seen so far.
        if not best_val_loss or val_loss < best_val_loss:
            print("[!] saving model...")
            if not os.path.isdir(".save"):
                os.makedirs(".save")
            torch.save(seq2seq.state_dict(), './.save/seq2seq_%d.pt' % (e))
            best_val_loss = val_loss
    test_loss = evaluate(seq2seq, test_iter, en_size, DE, EN)
    print("[TEST] loss:%5.2f" % test_loss) 
開發者ID:keon,項目名稱:seq2seq,代碼行數:42,代碼來源:train.py

示例8: eval_bs_batch

# 需要導入模塊: import model [as 別名]
# 或者: from model import Seq2Seq [as 別名]
def eval_bs_batch(batch: Batch, model: Seq2Seq, vocab: Vocab, *, pack_seq=True, beam_size=4,
                  min_out_len=1, max_out_len=None, len_in_words=True, best_only=True,
                  details: bool=True) -> Tuple[Optional[List[Dict[str, float]]], Optional[str]]:
  """
  :param batch: a test batch of a single example
  :param model: a trained summarizer
  :param vocab: vocabulary of the trained summarizer
  :param pack_seq: currently has no effect as batch size is 1
  :param beam_size: the beam size
  :param min_out_len: required minimum output length
  :param max_out_len: required maximum output length (if None, use the model's own value)
  :param len_in_words: if True, count output length in words instead of tokens (i.e. do not count
                       punctuations)
  :param best_only: if True, run ROUGE only on the best hypothesis instead of all `beam size` many
  :param details: if True, also return a string containing the result of this document
  :return: two-level score lookup (hypothesis index => ROUGE metric => value)

  Test a trained summarizer on a document using the beam search decoder.
  """
  assert len(batch.examples) == 1
  with torch.no_grad():
    input_tensor = batch.input_tensor.to(DEVICE)
    hypotheses = model.beam_search(input_tensor, batch.input_lengths if pack_seq else None,
                                   batch.ext_vocab_size, beam_size, min_out_len=min_out_len,
                                   max_out_len=max_out_len, len_in_words=len_in_words)
  if best_only:
    to_decode = [hypotheses[0].tokens]
  else:
    to_decode = [h.tokens for h in hypotheses]
  decoded_batch = decode_batch_output(to_decode, vocab, batch.oov_dict)
  if details:
    file_content = "[System Summary]\n" + format_tokens(decoded_batch[0])
  else:
    file_content = None
  if batch.examples[0].tgt is not None:  # run ROUGE if gold standard summary exists
    gold_summaries = [batch.examples[0].tgt for _ in range(len(decoded_batch))]
    scores = rouge(gold_summaries, decoded_batch)
    if details:
      file_content += "\n\n\n[Reference Summary]\n" + format_tokens(batch.examples[0].tgt)
      file_content += "\n\n\n[ROUGE Scores]\n" + format_rouge_scores(scores[0]) + "\n"
  else:
    scores = None
  if details:
    file_content += "\n\n\n[Source Text]\n" + format_tokens(batch.examples[0].src)
  return scores, file_content 
開發者ID:ymfa,項目名稱:seq2seq-summarizer,代碼行數:47,代碼來源:test.py

示例9: train_batch

# 需要導入模塊: import model [as 別名]
# 或者: from model import Seq2Seq [as 別名]
def train_batch(batch: Batch, model: Seq2Seq, criterion, optimizer, *,
                pack_seq=True, forcing_ratio=0.5, partial_forcing=True, sample=False,
                rl_ratio: float=0, vocab=None, grad_norm: float=0, show_cover_loss=False):
  if not pack_seq:
    input_lengths = None
  else:
    input_lengths = batch.input_lengths

  optimizer.zero_grad()
  input_tensor = batch.input_tensor.to(DEVICE)
  target_tensor = batch.target_tensor.to(DEVICE)
  ext_vocab_size = batch.ext_vocab_size

  out = model(input_tensor, target_tensor, input_lengths, criterion,
              forcing_ratio=forcing_ratio, partial_forcing=partial_forcing, sample=sample,
              ext_vocab_size=ext_vocab_size, include_cover_loss=show_cover_loss)

  if rl_ratio > 0:
    assert vocab is not None
    sample_out = model(input_tensor, saved_out=out, criterion=criterion, sample=True,
                       ext_vocab_size=ext_vocab_size)
    baseline_out = model(input_tensor, saved_out=out, visualize=False,
                         ext_vocab_size=ext_vocab_size)
    scores = eval_batch_output([ex.tgt for ex in batch.examples], vocab, batch.oov_dict,
                               sample_out.decoded_tokens, baseline_out.decoded_tokens)
    greedy_rouge = scores[1]['l_f']
    neg_reward = greedy_rouge - scores[0]['l_f']
    # if sample > baseline, the reward is positive (i.e. good exploration), rl_loss is negative
    rl_loss = neg_reward * sample_out.loss
    rl_loss_value = neg_reward * sample_out.loss_value
    loss = (1 - rl_ratio) * out.loss + rl_ratio * rl_loss
    loss_value = (1 - rl_ratio) * out.loss_value + rl_ratio * rl_loss_value
  else:
    loss = out.loss
    loss_value = out.loss_value
    greedy_rouge = None

  loss.backward()
  if grad_norm > 0:
    clip_grad_norm_(model.parameters(), grad_norm)
  optimizer.step()

  target_length = target_tensor.size(0)
  return loss_value / target_length, greedy_rouge 
開發者ID:ymfa,項目名稱:seq2seq-summarizer,代碼行數:46,代碼來源:train.py

示例10: build_model

# 需要導入模塊: import model [as 別名]
# 或者: from model import Seq2Seq [as 別名]
def build_model(vocab_size, load_checkpoint=False, checkpoint_epoch=-1, print_module=True):
    hidden_size = config['MODEL']['HIDDEN_SIZE']
    attn_method = config['MODEL']['ATTN_METHOD']
    num_encoder_layers = config['MODEL']['N_ENCODER_LAYERS']
    dropout = config['MODEL']['DROPOUT']
    encoder = Encoder(vocab_size, hidden_size, num_encoder_layers, dropout=dropout)
    decoder = Decoder(hidden_size, vocab_size, attn_method, num_encoder_layers, dropout=dropout)
    model = Seq2Seq(
        encoder=encoder,
        decoder=decoder,
        max_length=config['LOADER']['MAX_LENGTH'],
        tie_weights=config['MODEL']['TIE_WEIGHTS']
    )
    if print_module:
        print(model)
    if load_checkpoint is True and os.path.exists(CHECKPOINT_PATH) is True:
        # load checkpoint
        prefix = config['TRAIN']['PREFIX']
        model_path = None
        if checkpoint_epoch >= 0:
            model_path = '%s%s_%d' % (CHECKPOINT_PATH, prefix, checkpoint_epoch)
        else:
            # use last checkpoint
            checkpoints = []
            for root, dirs, files in os.walk(CHECKPOINT_PATH):
                for f_name in files:
                    f_name_sp = f_name.split('_')
                    if len(f_name_sp) == 2:
                        checkpoints.append(int(f_name_sp[1]))
            if len(checkpoints) > 0:
                model_path = '%s%s_%d' % (CHECKPOINT_PATH, prefix, max(checkpoints))

        if model_path is not None and os.path.exists(model_path):
            if IMPORT_FROM_CUDA:
                loaded = torch.load(model_path, map_location=lambda storage, loc: storage)
            else:
                loaded = torch.load(model_path)

            model.load_state_dict(loaded)
            print('Load %s' % model_path)

    # print('Seq2Seq parameters:')
    # for name, param in model.state_dict().items():
    #     print(name, param.size())
    if USE_CUDA:
        model = model.cuda()
    return model 
開發者ID:Great-Li-Xin,項目名稱:dumb-chatbot,代碼行數:49,代碼來源:model_utils.py

示例11: _load_model

# 需要導入模塊: import model [as 別名]
# 或者: from model import Seq2Seq [as 別名]
def _load_model(self):
        print 'Loading pretrained model'
        if self.config['model']['seq2seq'] == 'vanilla':
            print 'Loading Seq2Seq Vanilla model'

            self.model = Seq2Seq(
                src_emb_dim=self.config['model']['dim_word_src'],
                trg_emb_dim=self.config['model']['dim_word_trg'],
                src_vocab_size=len(self.src_dict),
                trg_vocab_size=len(self.tgt_dict),
                src_hidden_dim=self.config['model']['dim'],
                trg_hidden_dim=self.config['model']['dim'],
                batch_size=self.config['data']['batch_size'],
                bidirectional=self.config['model']['bidirectional'],
                pad_token_src=self.src_dict['<pad>'],
                pad_token_trg=self.tgt_dict['<pad>'],
                nlayers=self.config['model']['n_layers_src'],
                nlayers_trg=self.config['model']['n_layers_trg'],
                dropout=0.,
            ).cuda()

        elif self.config['model']['seq2seq'] == 'attention':
            print 'Loading Seq2Seq Attention model'

            self.model = Seq2SeqAttention(
                src_emb_dim=self.config['model']['dim_word_src'],
                trg_emb_dim=self.config['model']['dim_word_trg'],
                src_vocab_size=len(self.src_dict),
                trg_vocab_size=len(self.tgt_dict),
                src_hidden_dim=self.config['model']['dim'],
                trg_hidden_dim=self.config['model']['dim'],
                ctx_hidden_dim=self.config['model']['dim'],
                attention_mode='dot',
                batch_size=self.config['data']['batch_size'],
                bidirectional=self.config['model']['bidirectional'],
                pad_token_src=self.src_dict['<pad>'],
                pad_token_trg=self.tgt_dict['<pad>'],
                nlayers=self.config['model']['n_layers_src'],
                nlayers_trg=self.config['model']['n_layers_trg'],
                dropout=0.,
            ).cuda()

        self.model.load_state_dict(torch.load(
            open(self.model_weights)
        )) 
開發者ID:MaximumEntropy,項目名稱:Seq2Seq-PyTorch,代碼行數:47,代碼來源:decode.py


注:本文中的model.Seq2Seq方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。