本文整理匯總了Python中model.Model方法的典型用法代碼示例。如果您正苦於以下問題:Python model.Model方法的具體用法?Python model.Model怎麽用?Python model.Model使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類model
的用法示例。
在下文中一共展示了model.Model方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: import model [as 別名]
# 或者: from model import Model [as 別名]
def main(cache_dir):
files_list = list(os.listdir(cache_dir))
for file in files_list:
full_filename = os.path.join(cache_dir, file)
if os.path.isfile(full_filename):
print("Processing {}".format(full_filename))
m, stored_kwargs = pickle.load(open(full_filename, 'rb'))
updated_kwargs = util.get_compatible_kwargs(model.Model, stored_kwargs)
model_hash = util.object_hash(updated_kwargs)
print("New hash -> " + model_hash)
model_filename = os.path.join(cache_dir, "model_{}.p".format(model_hash))
sys.setrecursionlimit(100000)
pickle.dump((m,updated_kwargs), open(model_filename,'wb'), protocol=pickle.HIGHEST_PROTOCOL)
os.remove(full_filename)
示例2: _eval
# 需要導入模塊: import model [as 別名]
# 或者: from model import Model [as 別名]
def _eval(path_to_checkpoint: str, dataset_name: str, backbone_name: str, path_to_data_dir: str, path_to_results_dir: str):
dataset = DatasetBase.from_name(dataset_name)(path_to_data_dir, DatasetBase.Mode.EVAL, Config.IMAGE_MIN_SIDE, Config.IMAGE_MAX_SIDE)
evaluator = Evaluator(dataset, path_to_data_dir, path_to_results_dir)
Log.i('Found {:d} samples'.format(len(dataset)))
backbone = BackboneBase.from_name(backbone_name)(pretrained=False)
model = Model(backbone, dataset.num_classes(), pooler_mode=Config.POOLER_MODE,
anchor_ratios=Config.ANCHOR_RATIOS, anchor_sizes=Config.ANCHOR_SIZES,
rpn_pre_nms_top_n=Config.RPN_PRE_NMS_TOP_N, rpn_post_nms_top_n=Config.RPN_POST_NMS_TOP_N).cuda()
model.load(path_to_checkpoint)
Log.i('Start evaluating with 1 GPU (1 batch per GPU)')
mean_ap, detail = evaluator.evaluate(model)
Log.i('Done')
Log.i('mean AP = {:.4f}'.format(mean_ap))
Log.i('\n' + detail)
示例3: main
# 需要導入模塊: import model [as 別名]
# 或者: from model import Model [as 別名]
def main():
parser = argparse.ArgumentParser(description='test', formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument(
'-a', '--attributes',
nargs='+',
type=str,
help='Specify attribute name for training. \nAll attributes can be found in list_attr_celeba.txt'
)
parser.add_argument(
'-g', '--gpu',
default='0',
type=str,
help='Specify GPU id. \ndefault: %(default)s. \nUse comma to seperate several ids, for example: 0,1'
)
args = parser.parse_args()
celebA = Dataset(args.attributes)
DNA_GAN = Model(args.attributes, is_train=True)
run(config, celebA, DNA_GAN, gpu=args.gpu)
示例4: _eval
# 需要導入模塊: import model [as 別名]
# 或者: from model import Model [as 別名]
def _eval(path_to_checkpoint, backbone_name, path_to_results_dir):
dataset = AVA_video(EvalConfig.VAL_DATA)
evaluator = Evaluator(dataset, path_to_results_dir)
Log.i('Found {:d} samples'.format(len(dataset)))
backbone = BackboneBase.from_name(backbone_name)()
model = Model(backbone, dataset.num_classes(), pooler_mode=Config.POOLER_MODE,
anchor_ratios=Config.ANCHOR_RATIOS, anchor_sizes=Config.ANCHOR_SIZES,
rpn_pre_nms_top_n=TrainConfig.RPN_PRE_NMS_TOP_N, rpn_post_nms_top_n=TrainConfig.RPN_POST_NMS_TOP_N).cuda()
model.load(path_to_checkpoint)
print("load from:",path_to_checkpoint)
Log.i('Start evaluating with 1 GPU (1 batch per GPU)')
mean_ap, detail = evaluator.evaluate(model)
Log.i('Done')
Log.i('mean AP = {:.4f}'.format(mean_ap))
Log.i('\n' + detail)
示例5: sample
# 需要導入模塊: import model [as 別名]
# 或者: from model import Model [as 別名]
def sample(args):
with open(os.path.join(args.save_dir, 'config.pkl'), 'rb') as f:
saved_args = cPickle.load(f)
with open(os.path.join(args.save_dir, 'chars_vocab.pkl'), 'rb') as f:
chars, vocab = cPickle.load(f)
#Use most frequent char if no prime is given
if args.prime == '':
args.prime = chars[0]
model = Model(saved_args, training=False)
with tf.Session() as sess:
tf.global_variables_initializer().run()
saver = tf.train.Saver(tf.global_variables())
ckpt = tf.train.get_checkpoint_state(args.save_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
data = model.sample(sess, chars, vocab, args.n, args.prime,
args.sample).encode('utf-8')
print(data.decode("utf-8"))
示例6: main
# 需要導入模塊: import model [as 別名]
# 或者: from model import Model [as 別名]
def main(_):
dataset = get_record_dataset(FLAGS.record_path)
data_provider = slim.dataset_data_provider.DatasetDataProvider(dataset)
image, label = data_provider.get(['image', 'label'])
inputs, labels = tf.train.batch([image, label],
batch_size=64,
allow_smaller_final_batch=True)
cls_model = model.Model(is_training=True)
preprocessed_inputs = cls_model.preprocess(inputs)
prediction_dict = cls_model.predict(preprocessed_inputs)
loss_dict = cls_model.loss(prediction_dict, labels)
loss = loss_dict['loss']
postprocessed_dict = cls_model.postprocess(prediction_dict)
acc = cls_model.accuracy(postprocessed_dict, labels)
tf.summary.scalar('loss', loss)
tf.summary.scalar('accuracy', acc)
optimizer = tf.train.MomentumOptimizer(learning_rate=0.01, momentum=0.9)
train_op = slim.learning.create_train_op(loss, optimizer,
summarize_gradients=True)
slim.learning.train(train_op=train_op, logdir=FLAGS.logdir,
save_summaries_secs=20, save_interval_secs=120)
示例7: inference
# 需要導入模塊: import model [as 別名]
# 或者: from model import Model [as 別名]
def inference(ckpt, inference_input_file, inference_output_file, hparams, num_workers=1, jobid=0, scope=None, single_cell_fn=None):
"""Perform translation."""
if hparams.inference_indices:
assert num_workers == 1
if not hparams.attention:
model_creator = nmt_model.Model
elif hparams.attention_architecture == "standard":
model_creator = attention_model.AttentionModel
elif hparams.attention_architecture in ["gnmt", "gnmt_v2"]:
model_creator = gnmt_model.GNMTModel
else:
raise ValueError("Unknown model architecture")
infer_model = create_infer_model(model_creator, hparams, scope, single_cell_fn)
if num_workers == 1:
single_worker_inference(infer_model, ckpt, inference_input_file, inference_output_file, hparams)
else:
multi_worker_inference(infer_model, ckpt, inference_input_file, inference_output_file, hparams, num_workers=num_workers, jobid=jobid)
示例8: main
# 需要導入模塊: import model [as 別名]
# 或者: from model import Model [as 別名]
def main(_):
# Specify which gpu to be used
os.environ["CUDA_VISIBLE_DEVICES"] = '1'
cls_model = model.Model(is_training=False, num_classes=61)
if FLAGS.input_shape:
input_shape = [
int(dim) if dim != -1 else None
for dim in FLAGS.input_shape.split(',')
]
else:
input_shape = [None, None, None, 3]
exporter.export_inference_graph(FLAGS.input_type,
cls_model,
FLAGS.trained_checkpoint_prefix,
FLAGS.output_directory,
input_shape)
示例9: main
# 需要導入模塊: import model [as 別名]
# 或者: from model import Model [as 別名]
def main(_):
with tf.device(FLAGS.device):
model_save_path = 'model/'+FLAGS.model_save_path
# create directory if it does not exist
if not tf.gfile.Exists(model_save_path):
tf.gfile.MakeDirs(model_save_path)
log_dir = 'logs/'+ model_save_path
model = Model(learning_rate=0.0003, mode=FLAGS.mode)
solver = Solver(model, model_save_path=model_save_path, log_dir=log_dir)
# create directory if it does not exist
if not tf.gfile.Exists(model_save_path):
tf.gfile.MakeDirs(model_save_path)
if FLAGS.mode == 'train':
solver.train()
elif FLAGS.mode == 'test':
solver.test(checkpoint=FLAGS.checkpoint)
else:
print 'Unrecognized mode.'
示例10: setup_train
# 需要導入模塊: import model [as 別名]
# 或者: from model import Model [as 別名]
def setup_train(self, model_file_path=None):
self.model = Model(model_file_path)
params = list(self.model.encoder.parameters()) + list(self.model.decoder.parameters()) + \
list(self.model.reduce_state.parameters())
initial_lr = config.lr_coverage if config.is_coverage else config.lr
if config.mode == 'MLE':
self.optimizer = Adagrad(params, lr=0.15, initial_accumulator_value=0.1)
else:
self.optimizer = Adam(params, lr=initial_lr)
start_iter, start_loss = 0, 0
if model_file_path is not None:
state = torch.load(model_file_path, map_location= lambda storage, location: storage)
start_iter = state['iter']
start_loss = state['current_loss']
return start_iter, start_loss
示例11: train
# 需要導入模塊: import model [as 別名]
# 或者: from model import Model [as 別名]
def train():
model.train()
total_loss = 0
for word, char, label in tqdm(training_data, mininterval=1,
desc='Train Processing', leave=False):
optimizer.zero_grad()
loss, _ = model(word, char, label)
loss.backward()
optimizer.step()
optimizer.update_learning_rate()
total_loss += loss.data
return total_loss / training_data._stop_step
# ##############################################################################
# Save Model
# ##############################################################################
示例12: create_model
# 需要導入模塊: import model [as 別名]
# 或者: from model import Model [as 別名]
def create_model(self):
return model.Model(
self.num_char_classes, self.seq_length, num_views=4, null_code=62)
示例13: create_model
# 需要導入模塊: import model [as 別名]
# 或者: from model import Model [as 別名]
def create_model(*args, **kwargs):
ocr_model = model.Model(mparams=create_mparams(), *args, **kwargs)
return ocr_model
示例14: get_model
# 需要導入模塊: import model [as 別名]
# 或者: from model import Model [as 別名]
def get_model(self):
# vocab size is the number of distinct values that
# could go into the memory key-value storage
vocab_size = self.episode_width * self.batch_size
return model.Model(
self.input_dim, self.output_dim, self.rep_dim, self.memory_size,
vocab_size, use_lsh=self.use_lsh)
示例15: get_model
# 需要導入模塊: import model [as 別名]
# 或者: from model import Model [as 別名]
def get_model(self):
cls = model.Model
return cls(self.env_spec, self.global_step,
target_network_lag=self.target_network_lag,
sample_from=self.sample_from,
get_policy=self.get_policy,
get_baseline=self.get_baseline,
get_objective=self.get_objective,
get_trust_region_p_opt=self.get_trust_region_p_opt,
get_value_opt=self.get_value_opt)