本文整理匯總了Python中mnist_loader.load_data_wrapper方法的典型用法代碼示例。如果您正苦於以下問題:Python mnist_loader.load_data_wrapper方法的具體用法?Python mnist_loader.load_data_wrapper怎麽用?Python mnist_loader.load_data_wrapper使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mnist_loader
的用法示例。
在下文中一共展示了mnist_loader.load_data_wrapper方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: run_network
# 需要導入模塊: import mnist_loader [as 別名]
# 或者: from mnist_loader import load_data_wrapper [as 別名]
def run_network(filename, num_epochs, training_set_size=1000, lmbda=0.0):
"""Train the network for ``num_epochs`` on ``training_set_size``
images, and store the results in ``filename``. Those results can
later be used by ``make_plots``. Note that the results are stored
to disk in large part because it's convenient not to have to
``run_network`` each time we want to make a plot (it's slow).
"""
# Make results more easily reproducible
random.seed(12345678)
np.random.seed(12345678)
training_data, validation_data, test_data = mnist_loader.load_data_wrapper()
net = network2.Network([784, 30, 10], cost=network2.CrossEntropyCost())
net.large_weight_initializer()
test_cost, test_accuracy, training_cost, training_accuracy \
= net.SGD(training_data[:training_set_size], num_epochs, 10, 0.5,
evaluation_data=test_data, lmbda = lmbda,
monitor_evaluation_cost=True,
monitor_evaluation_accuracy=True,
monitor_training_cost=True,
monitor_training_accuracy=True)
f = open(filename, "w")
json.dump([test_cost, test_accuracy, training_cost, training_accuracy], f)
f.close()
示例2: run_networks
# 需要導入模塊: import mnist_loader [as 別名]
# 或者: from mnist_loader import load_data_wrapper [as 別名]
def run_networks():
"""Train networks using three different values for the learning rate,
and store the cost curves in the file ``multiple_eta.json``, where
they can later be used by ``make_plot``.
"""
# Make results more easily reproducible
random.seed(12345678)
np.random.seed(12345678)
training_data, validation_data, test_data = mnist_loader.load_data_wrapper()
results = []
for eta in LEARNING_RATES:
print "\nTrain a network using eta = "+str(eta)
net = network2.Network([784, 30, 10])
results.append(
net.SGD(training_data, NUM_EPOCHS, 10, eta, lmbda=5.0,
evaluation_data=validation_data,
monitor_training_cost=True))
f = open("multiple_eta.json", "w")
json.dump(results, f)
f.close()
示例3: run_networks
# 需要導入模塊: import mnist_loader [as 別名]
# 或者: from mnist_loader import load_data_wrapper [as 別名]
def run_networks():
# Make results more easily reproducible
random.seed(12345678)
np.random.seed(12345678)
training_data, validation_data, test_data = mnist_loader.load_data_wrapper()
net = network2.Network([784, 30, 10], cost=network2.CrossEntropyCost())
accuracies = []
for size in SIZES:
print "\n\nTraining network with data set size %s" % size
net.large_weight_initializer()
num_epochs = 1500000 / size
net.SGD(training_data[:size], num_epochs, 10, 0.5, lmbda = size*0.0001)
accuracy = net.accuracy(validation_data) / 100.0
print "Accuracy was %s percent" % accuracy
accuracies.append(accuracy)
f = open("more_data.json", "w")
json.dump(accuracies, f)
f.close()
示例4: train
# 需要導入模塊: import mnist_loader [as 別名]
# 或者: from mnist_loader import load_data_wrapper [as 別名]
def train(self):
# get hyper parameters
epochs = self.hyperparas.get('epochs', 30)
batch_size = self.hyperparas.get('batch_size', 10)
eta = self.hyperparas.get('eta', 1.0)
# get data
cwd = os.getcwd()
os.chdir(NNDL_PATH)
training_data, validation_data, test_data = load_data_wrapper()
os.chdir(cwd)
return self.model.SGD(training_data, epochs, batch_size, eta, test_data)
示例5: run_network
# 需要導入模塊: import mnist_loader [as 別名]
# 或者: from mnist_loader import load_data_wrapper [as 別名]
def run_network(filename, n, eta):
"""Train the network using both the default and the large starting
weights. Store the results in the file with name ``filename``,
where they can later be used by ``make_plots``.
"""
# Make results more easily reproducible
random.seed(12345678)
np.random.seed(12345678)
training_data, validation_data, test_data = mnist_loader.load_data_wrapper()
net = network2.Network([784, n, 10], cost=network2.CrossEntropyCost)
print "Train the network using the default starting weights."
default_vc, default_va, default_tc, default_ta \
= net.SGD(training_data, 30, 10, eta, lmbda=5.0,
evaluation_data=validation_data,
monitor_evaluation_accuracy=True)
print "Train the network using the large starting weights."
net.large_weight_initializer()
large_vc, large_va, large_tc, large_ta \
= net.SGD(training_data, 30, 10, eta, lmbda=5.0,
evaluation_data=validation_data,
monitor_evaluation_accuracy=True)
f = open(filename, "w")
json.dump({"default_weight_initialization":
[default_vc, default_va, default_tc, default_ta],
"large_weight_initialization":
[large_vc, large_va, large_tc, large_ta]},
f)
f.close()
示例6: main
# 需要導入模塊: import mnist_loader [as 別名]
# 或者: from mnist_loader import load_data_wrapper [as 別名]
def main():
# Load the data
full_td, _, _ = mnist_loader.load_data_wrapper()
td = full_td[:1000] # Just use the first 1000 items of training data
epochs = 500 # Number of epochs to train for
print "\nTwo hidden layers:"
net = network2.Network([784, 30, 30, 10])
initial_norms(td, net)
abbreviated_gradient = [
ag[:6] for ag in get_average_gradient(net, td)[:-1]]
print "Saving the averaged gradient for the top six neurons in each "+\
"layer.\nWARNING: This will affect the look of the book, so be "+\
"sure to check the\nrelevant material (early chapter 5)."
f = open("initial_gradient.json", "w")
json.dump(abbreviated_gradient, f)
f.close()
shutil.copy("initial_gradient.json", "../../js/initial_gradient.json")
training(td, net, epochs, "norms_during_training_2_layers.json")
plot_training(
epochs, "norms_during_training_2_layers.json", 2)
print "\nThree hidden layers:"
net = network2.Network([784, 30, 30, 30, 10])
initial_norms(td, net)
training(td, net, epochs, "norms_during_training_3_layers.json")
plot_training(
epochs, "norms_during_training_3_layers.json", 3)
print "\nFour hidden layers:"
net = network2.Network([784, 30, 30, 30, 30, 10])
initial_norms(td, net)
training(td, net, epochs,
"norms_during_training_4_layers.json")
plot_training(
epochs, "norms_during_training_4_layers.json", 4)