本文整理匯總了Python中mne.pick_types方法的典型用法代碼示例。如果您正苦於以下問題:Python mne.pick_types方法的具體用法?Python mne.pick_types怎麽用?Python mne.pick_types使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mne
的用法示例。
在下文中一共展示了mne.pick_types方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: interpolate_bads
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import pick_types [as 別名]
def interpolate_bads(inst, picks, dots=None, reset_bads=True, mode='accurate'):
"""Interpolate bad MEG and EEG channels."""
import mne
# to prevent cobyla printf error
# XXX putting to critical for now unless better solution
# emerges
verbose = mne.set_log_level('CRITICAL', return_old_level=True)
eeg_picks = set(pick_types(inst.info, meg=False, eeg=True, exclude=[]))
eeg_picks_interp = [p for p in picks if p in eeg_picks]
if len(eeg_picks_interp) > 0:
_interpolate_bads_eeg(inst, picks=eeg_picks_interp)
meg_picks = set(pick_types(inst.info, meg=True, eeg=False, exclude=[]))
meg_picks_interp = [p for p in picks if p in meg_picks]
if len(meg_picks_interp) > 0:
_interpolate_bads_meg_fast(inst, picks=meg_picks_interp,
dots=dots, mode=mode)
if reset_bads is True:
inst.info['bads'] = []
mne.set_log_level(verbose)
return inst
示例2: calc_noise_epoches_from_empty_room
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import pick_types [as 別名]
def calc_noise_epoches_from_empty_room(events_id, data_raw_fname, empty_room_raw_fname, from_t, to_t,
overwrite_epochs=False):
from mne.event import make_fixed_length_events
from mne.io import Raw
epochs_noise_dic = {}
epochs_noise_fnames = [get_cond_fname(EPO_NOISE, event) for event in events_id.keys()]
if np.all([os.path.isfile(fname) for fname in epochs_noise_fnames]) and not overwrite_epochs:
for event in events_id.keys():
epochs_noise_dic[event] = mne.read_epochs(get_cond_fname(EPO_NOISE, event))
else:
raw = Raw(data_raw_fname)
raw_noise = Raw(empty_room_raw_fname)
# raw_noise.info['bads'] = ['MEG0321'] # 1 bad MEG channel
picks = mne.pick_types(raw.info, meg=True)#, exclude='bads')
events_noise = make_fixed_length_events(raw_noise, 1)
epochs_noise = mne.Epochs(raw_noise, events_noise, 1, from_t,
to_t, proj=True, picks=picks, baseline=None, preload=True)
for event, event_id in events_id.items():
# then make sure the number of epochs is the same
epochs = mne.read_epochs(get_cond_fname(EPO, event))
epochs_noise_dic[event] = epochs_noise[:len(epochs.events)]
epochs_noise_dic[event].save(get_cond_fname(EPO_NOISE, event))
return epochs_noise_dic
示例3: _handle_picks
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import pick_types [as 別名]
def _handle_picks(info, picks):
"""Pick the data channls or return picks."""
if picks is None:
out = mne.pick_types(
info, meg=True, eeg=True, ref_meg=False, exclude='bads')
else:
out = picks
return out
示例4: test_global_autoreject
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import pick_types [as 別名]
def test_global_autoreject():
"""Test global autoreject."""
event_id = None
tmin, tmax = -0.2, 0.5
events = mne.find_events(raw)
picks = mne.pick_types(raw.info, meg=True, eeg=True, stim=False,
eog=True, exclude=[])
# raise error if preload is false
epochs = mne.Epochs(raw, events, event_id, tmin, tmax,
picks=picks, baseline=(None, 0),
reject=None, preload=False)
# Test get_rejection_thresholds.
reject1 = get_rejection_threshold(epochs, decim=1, random_state=42)
reject2 = get_rejection_threshold(epochs, decim=1, random_state=42)
reject3 = get_rejection_threshold(epochs, decim=2, random_state=42)
tols = dict(eeg=5e-6, eog=5e-6, grad=10e-12, mag=5e-15)
assert reject1, isinstance(reject1, dict)
for key, value in list(reject1.items()):
assert reject1[key] == reject2[key]
assert abs(reject1[key] - reject3[key]) < tols[key]
reject = get_rejection_threshold(epochs, decim=4, ch_types='eeg')
assert 'eog' not in reject
assert 'eeg' in reject
pytest.raises(ValueError, get_rejection_threshold, epochs,
decim=4, ch_types=5)
示例5: test_io
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import pick_types [as 別名]
def test_io():
"""Test IO functionality."""
event_id = None
tmin, tmax = -0.2, 0.5
events = mne.find_events(raw)
savedir = _TempDir()
fname = op.join(savedir, 'autoreject.hdf5')
include = [u'EEG %03d' % i for i in range(1, 45, 3)]
picks = mne.pick_types(raw.info, meg=False, eeg=False, stim=False,
eog=True, include=include, exclude=[])
# raise error if preload is false
epochs = mne.Epochs(raw, events, event_id, tmin, tmax,
picks=picks, baseline=(None, 0), decim=4,
reject=None, preload=True)[:10]
ar = AutoReject(cv=2, random_state=42, n_interpolate=[1],
consensus=[0.5], verbose=False)
ar.save(fname) # save without fitting
# check that fit after saving is the same as fit
# without saving
ar2 = read_auto_reject(fname)
ar.fit(epochs)
ar2.fit(epochs)
assert np.sum([ar.threshes_[k] - ar2.threshes_[k]
for k in ar.threshes_.keys()]) == 0.
pytest.raises(ValueError, ar.save, fname)
ar.save(fname, overwrite=True)
ar3 = read_auto_reject(fname)
epochs_clean1, reject_log1 = ar.transform(epochs, return_log=True)
epochs_clean2, reject_log2 = ar3.transform(epochs, return_log=True)
assert_array_equal(epochs_clean1.get_data(), epochs_clean2.get_data())
assert_array_equal(reject_log1.labels, reject_log2.labels)
示例6: test_utils
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import pick_types [as 別名]
def test_utils():
"""Test utils."""
event_id = {'Visual/Left': 3}
tmin, tmax = -0.2, 0.5
events = mne.find_events(raw)
picks = mne.pick_channels(raw.info['ch_names'],
['MEG 2443', 'MEG 2442', 'MEG 2441'])
epochs = mne.Epochs(raw, events, event_id, tmin, tmax,
picks=picks, baseline=(None, 0),
reject=None, preload=True)
this_epoch = epochs.copy()
epochs_clean = clean_by_interp(this_epoch)
assert_array_equal(this_epoch.get_data(), epochs.get_data())
pytest.raises(AssertionError, assert_array_equal, epochs_clean.get_data(),
this_epoch.get_data())
picks_meg = mne.pick_types(evoked.info, meg='grad', eeg=False, exclude=[])
picks_eeg = mne.pick_types(evoked.info, meg=False, eeg=True, exclude=[])
picks_bad_meg = mne.pick_channels(evoked.ch_names, include=['MEG 2443'])
picks_bad_eeg = mne.pick_channels(evoked.ch_names, include=['EEG 053'])
evoked_orig = evoked.copy()
for picks, picks_bad in zip([picks_meg, picks_eeg],
[picks_bad_meg, picks_bad_eeg]):
evoked_autoreject = interpolate_bads(evoked, picks=picks,
reset_bads=False)
evoked.interpolate_bads(reset_bads=False)
assert_array_equal(evoked.data[picks_bad],
evoked_autoreject.data[picks_bad])
pytest.raises(AssertionError, assert_array_equal,
evoked_orig.data[picks_bad], evoked.data[picks_bad])
# test that autoreject EEG interpolation code behaves the same as MNE
evoked_ar = evoked_orig.copy()
evoked_mne = evoked_orig.copy()
origin = _check_origin('auto', evoked_ar.info)
_interpolate_bads_eeg(evoked_ar, picks=None)
mne.channels.interpolation._interpolate_bads_eeg(evoked_mne, origin=origin)
assert_array_almost_equal(evoked_ar.data, evoked_mne.data)
示例7: test_interpolate_bads
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import pick_types [as 別名]
def test_interpolate_bads():
"""Test interpolate bads."""
event_id = None
events = mne.find_events(raw)
tmin, tmax = -0.2, 0.5
for ii, ch_name in enumerate(raw.info['ch_names'][:14]):
raw.set_channel_types({ch_name: 'bio'})
raw.rename_channels({ch_name: 'BIO%02d' % ii})
picks = mne.pick_types(raw.info, meg='grad', eeg=False, eog=False)
epochs = mne.Epochs(raw, events, event_id, tmin, tmax,
baseline=(None, 0), decim=10,
reject=None, preload=True)[:10]
epochs.info['bads'] = ['MEG 2212']
interpolate_bads(epochs, picks)
示例8: _calc_sensors_power_parallel
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import pick_types [as 別名]
def _calc_sensors_power_parallel(p):
from mne.time_frequency import tfr_array_morlet
subject, window_fname, modality, inverse_method, bad_channels, downsample, high_gamma_max, overwrite = p
root_dir = utils.make_dir(op.join(EEG_DIR if modality == 'eeg' else MEG_DIR, subject))
output_fname_template = op.join(root_dir, '{}-epilepsy-{}-{}-{}-sensors_power.npy'.format(
subject, inverse_method, modality, '{window}'))
window = utils.namebase(window_fname)
output_fname = output_fname_template.format(window=window)
if op.isfile(output_fname) and not overwrite:
print('{} already exist'.format(output_fname))
return
evoked = mne.read_evokeds(window_fname)[0]
# evoked = evoked.resample(1000)
if modality == 'eeg':
picks = mne.pick_types(evoked.info, meg=False, eeg=True, exclude=bad_channels)
elif modality == 'meg':
picks = mne.pick_types(evoked.info, meg=True, eeg=False, exclude=bad_channels)
elif modality == 'meeg':
picks = mne.pick_types(evoked.info, meg=True, eeg=True, exclude=bad_channels)
else:
raise Exception('Wrong modality!')
evoked_data = evoked.data[np.newaxis, picks, :]
freqs, n_cycles = calc_morlet_freqs(evoked, high_gamma_max)
powers = tfr_array_morlet(
evoked_data, sfreq=evoked.info['sfreq'], freqs=freqs, n_cycles=n_cycles, output='power')
powers = np.squeeze(powers)
if powers.shape[2] % 2 == 1:
powers = powers[:, :, :-1]
if downsample > 1:
powers = utils.downsample_3d(powers, downsample)
powers_db = 10 * np.log10(powers) # dB/Hz should be baseline corrected!!!
print('Saving {}'.format(output_fname))
np.save(output_fname, powers_db.astype(np.float16))
示例9: init_data
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import pick_types [as 別名]
def init_data():
data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif'
fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif'
tmin, tmax, event_id = -0.2, 0.5, 1
# Setup for reading the raw data
raw = io.read_raw_fif(raw_fname)
events = mne.find_events(raw, stim_channel='STI 014')
inverse_operator = read_inverse_operator(fname_inv)
# Setting the label
label = mne.read_label(data_path + '/MEG/sample/labels/Aud-lh.label')
include = []
raw.info['bads'] += ['MEG 2443', 'EEG 053'] # bads + 2 more
# picks MEG gradiometers
picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=True,
stim=False, include=include, exclude='bads')
# Load condition 1
event_id = 1
# Use linear detrend to reduce any edge artifacts
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks,
baseline=(None, 0), reject=dict(grad=4000e-13, eog=150e-6),
preload=True, detrend=1)
return epochs, inverse_operator, label
示例10: _calc_epoches
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import pick_types [as 別名]
def _calc_epoches(params):
subject, events_id, tmin, tmax = params
out_file = op.join(LOCAL_ROOT_DIR, 'epo', '{}_ecr_nTSSS_conflict-epo.fif'.format(subject))
if not op.isfile(out_file):
events = mne.read_events(op.join(REMOTE_ROOT_DIR, 'events', '{}_ecr_nTSSS_conflict-eve.fif'.format(subject)))
raw = mne.io.Raw(op.join(REMOTE_ROOT_DIR, 'raw', '{}_ecr_nTSSS_raw.fif'.format(subject)), preload=False)
picks = mne.pick_types(raw.info, meg=True)
epochs = find_epoches(raw, picks, events, events_id, tmin=tmin, tmax=tmax)
epochs.save(out_file)
else:
epochs = mne.read_epochs(out_file)
return epochs
示例11: test_set
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import pick_types [as 別名]
def test_set(_bids_validate):
"""Test write_raw_bids conversion for EEGLAB data."""
# standalone .set file with associated .fdt
bids_root = _TempDir()
data_path = op.join(testing.data_path(), 'EEGLAB')
raw_fname = op.join(data_path, 'test_raw.set')
raw = mne.io.read_raw_eeglab(raw_fname)
# embedded - test mne-version assertion
tmp_version = mne.__version__
mne.__version__ = '0.16'
with pytest.raises(ValueError, match='Your version of MNE is too old.'):
write_raw_bids(raw, bids_basename, bids_root)
mne.__version__ = tmp_version
# proceed with the actual test for EEGLAB data
write_raw_bids(raw, bids_basename, bids_root, overwrite=False)
read_raw_bids(bids_basename=bids_basename, bids_root=bids_root, kind='eeg')
with pytest.raises(TypeError, match="unexpected keyword argument 'foo'"):
read_raw_bids(bids_basename=bids_basename, bids_root=bids_root,
kind='eeg', extra_params=dict(foo='bar'))
with pytest.raises(FileExistsError, match="already exists"): # noqa: F821
write_raw_bids(raw, bids_basename, bids_root=bids_root,
overwrite=False)
_bids_validate(bids_root)
# check events.tsv is written
# XXX: only from 0.18 onwards because events_from_annotations
# is broken for earlier versions
events_tsv_fname = op.join(bids_root, 'sub-' + subject_id,
'ses-' + session_id, 'eeg',
str(bids_basename) + '_events.tsv')
if check_version('mne', '0.18'):
assert op.exists(events_tsv_fname)
# Also cover iEEG
# We use the same data and pretend that eeg channels are ecog
raw.set_channel_types({raw.ch_names[i]: 'ecog'
for i in mne.pick_types(raw.info, eeg=True)})
bids_root = _TempDir()
write_raw_bids(raw, bids_basename, bids_root)
_bids_validate(bids_root)
# test anonymize and convert
if check_version('mne', '0.20') and check_version('pybv', '0.2.0'):
output_path = _test_anonymize(raw, bids_basename)
_bids_validate(output_path)
示例12: _interpolate_bads_eeg
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import pick_types [as 別名]
def _interpolate_bads_eeg(inst, picks=None, verbose=None):
""" Interpolate bad EEG channels.
Operates in place.
Parameters
----------
inst : mne.io.Raw, mne.Epochs or mne.Evoked
The data to interpolate. Must be preloaded.
picks: np.ndarray, shape(n_channels, ) | list | None
The channel indices to be used for interpolation.
"""
from mne.bem import _fit_sphere
from mne.utils import logger, warn
from mne.channels.interpolation import _do_interp_dots
from mne.channels.interpolation import _make_interpolation_matrix
import numpy as np
if picks is None:
picks = pick_types(inst.info, meg=False, eeg=True, exclude=[])
bads_idx = np.zeros(len(inst.ch_names), dtype=np.bool)
goods_idx = np.zeros(len(inst.ch_names), dtype=np.bool)
inst.info._check_consistency()
bads_idx[picks] = [inst.ch_names[ch] in inst.info['bads'] for ch in picks]
if len(picks) == 0 or bads_idx.sum() == 0:
return
goods_idx[picks] = True
goods_idx[bads_idx] = False
pos = inst._get_channel_positions(picks)
# Make sure only good EEG are used
bads_idx_pos = bads_idx[picks]
goods_idx_pos = goods_idx[picks]
pos_good = pos[goods_idx_pos]
pos_bad = pos[bads_idx_pos]
# test spherical fit
radius, center = _fit_sphere(pos_good)
distance = np.sqrt(np.sum((pos_good - center) ** 2, 1))
distance = np.mean(distance / radius)
if np.abs(1. - distance) > 0.1:
warn('Your spherical fit is poor, interpolation results are '
'likely to be inaccurate.')
logger.info('Computing interpolation matrix from {0} sensor '
'positions'.format(len(pos_good)))
interpolation = _make_interpolation_matrix(pos_good, pos_bad)
logger.info('Interpolating {0} sensors'.format(len(pos_bad)))
_do_interp_dots(inst, interpolation, goods_idx, bads_idx)
示例13: test_select_vertices_in_sensor_range
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import pick_types [as 別名]
def test_select_vertices_in_sensor_range(fwd, src):
"""Test selecting and restricting vertices in the sensor range"""
fwd_r = restrict_forward_to_vertices(fwd, ([1170, 1609], [2159]))
verts = select_vertices_in_sensor_range(fwd_r, 0.05)
assert_array_equal(verts[0], np.array([1170]))
assert_array_equal(verts[1], np.array([]))
# Test indices
verts = select_vertices_in_sensor_range(fwd_r, 0.07, indices=True)
assert_array_equal(verts, np.array([0, 1, 2]))
# Test restricting
fwd_rs = restrict_forward_to_sensor_range(fwd_r, 0.05)
assert_array_equal(fwd_rs['src'][0]['vertno'], np.array([1170]))
assert_array_equal(fwd_rs['src'][1]['vertno'], np.array([]))
verts = select_vertices_in_sensor_range(fwd_r, 0.07)
assert_array_equal(verts[0], np.array([1170, 1609]))
assert_array_equal(verts[1], np.array([2159]))
src_r = restrict_src_to_vertices(src, ([1170, 1609], [2159]))
with pytest.raises(ValueError): # info missing
select_vertices_in_sensor_range(src_r, 0.07)
info = _info()
with pytest.raises(ValueError): # trans missing
select_vertices_in_sensor_range(src_r, 0.07, info=info)
# Correct input
trans = _trans()
verts2 = select_vertices_in_sensor_range(src_r, 0.05, info=info,
trans=trans)
assert_array_equal(verts2[0], np.array([1170]))
verts2 = select_vertices_in_sensor_range(src_r, 0.07, info=info,
trans=trans)
assert_array_equal(verts[0], verts2[0])
assert_array_equal(verts[1], verts2[1])
# Indices
verts2 = select_vertices_in_sensor_range(src_r, 0.07, info=info,
trans=trans, indices=True)
assert_array_equal(verts2, np.array([0, 1, 2]))
# Try with only EEG
info = mne.pick_info(info, sel=mne.pick_types(info, meg=False, eeg=True))
verts2 = select_vertices_in_sensor_range(src_r, 0.05, info=info,
trans=trans)
assert_array_equal(verts2[0], np.array([1170, 1609]))
assert_array_equal(verts2[1], np.array([2159]))
示例14: __init__
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import pick_types [as 別名]
def __init__(
self, instance, montage_kind="standard_1020", low_cut=0.01, high_cut=50.0
):
"""Initialize the class."""
# Make sure that we got an MNE object
assert isinstance(instance, mne.io.BaseRaw)
# The data that we are targeting
# and a modifiable copy
self.raw_mne = instance
self.raw_copy = self.raw_mne.copy()
# Set montage, pick data type, get data and transform to uVolts
# We also filter all data at `low_cut` Hz highpass and obtain some data
# bandpassed between `low_cut` and `high_cut` Hz.
if LooseVersion(mne.__version__) < LooseVersion("0.20"):
montage = mne.channels.read_montage(
kind=montage_kind, ch_names=self.raw_copy.ch_names
)
else:
montage = mne.channels.make_standard_montage(montage_kind)
self.raw_copy.set_montage(montage)
self.raw_copy.pick_types(eeg=True, stim=False)
self.raw_copy.filter(
l_freq=low_cut,
h_freq=None,
method="fir",
fir_design="firwin",
verbose=False,
)
self.x = self.raw_copy.get_data() * 1e6
self.raw_copy.filter(
l_freq=None,
h_freq=high_cut,
method="fir",
fir_design="firwin",
verbose=False,
)
self.x_bp = self.raw_copy.get_data() * 1e6
self.ch_names = np.asarray(self.raw_copy.ch_names)
self.n_chans = len(self.ch_names)
self.signal_len = len(self.raw_copy.times)
self.sfreq = self.raw_copy.info["sfreq"]
self.chn_pos = self.raw_copy._get_channel_positions()
# The identified bad channels
self.bad_by_flat = []
self.bad_by_nan = []
self.bad_by_deviation = []
self.bad_by_hf_noise = []
self.bad_by_correlation = []
self.bad_by_ransac = []