本文整理匯總了Python中mne.create_info方法的典型用法代碼示例。如果您正苦於以下問題:Python mne.create_info方法的具體用法?Python mne.create_info怎麽用?Python mne.create_info使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mne
的用法示例。
在下文中一共展示了mne.create_info方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import create_info [as 別名]
def main():
BoardShim.enable_dev_board_logger ()
# use synthetic board for demo
params = BrainFlowInputParams ()
board = BoardShim (BoardIds.SYNTHETIC_BOARD.value, params)
board.prepare_session ()
board.start_stream ()
time.sleep (10)
data = board.get_board_data ()
board.stop_stream ()
board.release_session ()
eeg_channels = BoardShim.get_eeg_channels (BoardIds.SYNTHETIC_BOARD.value)
eeg_data = data[eeg_channels, :]
eeg_data = eeg_data / 1000000 # BrainFlow returns uV, convert to V for MNE
# Creating MNE objects from brainflow data arrays
ch_types = ['eeg', 'eeg', 'eeg', 'eeg', 'eeg', 'eeg', 'eeg', 'eeg']
ch_names = ['T7', 'CP5', 'FC5', 'C3', 'C4', 'FC6', 'CP6', 'T8']
sfreq = BoardShim.get_sampling_rate (BoardIds.SYNTHETIC_BOARD.value)
info = mne.create_info (ch_names = ch_names, sfreq = sfreq, ch_types = ch_types)
raw = mne.io.RawArray (eeg_data, info)
# its time to plot something!
raw.plot_psd (average = True)
plt.savefig ('psd.png')
示例2: make_epochs
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import create_info [as 別名]
def make_epochs(z_hat, info, t_lim, n_times_atom=1):
"""Make Epochs on the activations of atoms.
n_splits, n_atoms, n_times_valid = z_hat.shape
n_trials, n_atoms, n_times_epoch = z_hat_epoch.shape
"""
n_splits, n_atoms, n_times_valid = z_hat.shape
n_times = n_times_valid + n_times_atom - 1
# pad with zeros
padding = np.zeros((n_splits, n_atoms, n_times_atom - 1))
z_hat = np.concatenate([z_hat, padding], axis=2)
# reshape into an unique time-serie per atom
z_hat = np.reshape(z_hat.swapaxes(0, 1), (n_atoms, n_splits * n_times))
# create trials around the events, using mne
new_info = mne.create_info(ch_names=n_atoms, sfreq=info['sfreq'])
rawarray = mne.io.RawArray(data=z_hat, info=new_info, verbose=False)
t_min, t_max = t_lim
epochs = mne.Epochs(rawarray, info['events'], info['event_id'], t_min,
t_max, verbose=False)
z_hat_epoched = epochs.get_data()
return z_hat_epoched
示例3: test_handle_kind
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import create_info [as 別名]
def test_handle_kind():
"""Test the automatic extraction of kind from the data."""
# Create a dummy raw
n_channels = 1
sampling_rate = 100
data = random((n_channels, sampling_rate))
channel_types = ['grad', 'eeg', 'ecog']
expected_kinds = ['meg', 'eeg', 'ieeg']
# do it once for each type ... and once for "no type"
for chtype, kind in zip(channel_types, expected_kinds):
info = mne.create_info(n_channels, sampling_rate, ch_types=[chtype])
raw = mne.io.RawArray(data, info)
assert _handle_kind(raw) == kind
# if the situation is ambiguous (EEG and iEEG channels both), raise error
with pytest.raises(ValueError, match='Both EEG and iEEG channels found'):
info = mne.create_info(2, sampling_rate,
ch_types=['eeg', 'ecog'])
raw = mne.io.RawArray(random((2, sampling_rate)), info)
_handle_kind(raw)
# if we cannot find a proper channel type, we raise an error
with pytest.raises(ValueError, match='Neither MEG/EEG/iEEG channels'):
info = mne.create_info(n_channels, sampling_rate, ch_types=['misc'])
raw = mne.io.RawArray(data, info)
_handle_kind(raw)
示例4: create_raw
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import create_info [as 別名]
def create_raw(npts, ch_names=['F4-M1', 'F3-M2'], sf=100):
"""Utility function for test fit to data."""
nchan = len(ch_names)
info = mne.create_info(ch_names=ch_names, sfreq=sf,
ch_types=['eeg'] * nchan, verbose=0)
data = np.random.rand(nchan, npts)
raw = mne.io.RawArray(data, info, verbose=0)
return raw
示例5: write_mnefiff
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import create_info [as 別名]
def write_mnefiff(data, filename):
"""Export data to MNE using FIFF format.
Parameters
----------
data : instance of ChanTime
data with only one trial
filename : path to file
file to export to (include '.mat')
Notes
-----
It cannot store data larger than 2 GB.
The data is assumed to have only EEG electrodes.
It overwrites a file if it exists.
"""
from mne import create_info, set_log_level
from mne.io import RawArray
set_log_level(WARNING)
TRIAL = 0
info = create_info(list(data.axis['chan'][TRIAL]), data.s_freq, ['eeg', ] *
data.number_of('chan')[TRIAL])
UNITS = 1e-6 # mne wants data in uV
fiff = RawArray(data.data[0] * UNITS, info)
if data.attr['chan']:
fiff.set_channel_positions(data.attr['chan'].return_xyz(),
data.attr['chan'].return_label())
fiff.save(filename, overwrite=True)
示例6: preprocess
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import create_info [as 別名]
def preprocess(self):
# filtering
self.eeg = butter_bandpass_filter(self.eeg, 0.15, self.sfreq)
self.emg = butter_bandpass_filter(self.emg, 10.0, self.sfreq)
self.eog = butter_bandpass_filter(self.eog, 0.15, self.sfreq)
# resampling
if not np.isclose(self.sfreq, 100):
print('resampling from {} Hz to {} Hz'.format(self.sfreq, 100))
if self.use_mp and hasattr(SleepData,'pool') and type(SleepData.pool) is Pool:
res_eeg = SleepData.pool.apply_async(mne.io.RawArray(np.stack([self.eeg]), mne.create_info(1, self.sfreq, 'eeg'), verbose=0).resample, args = (100.,))
res_emg = SleepData.pool.apply_async(mne.io.RawArray(np.stack([self.emg]), mne.create_info(1, self.sfreq, 'eeg'), verbose=0).resample, args = (100.,))
res_eog = SleepData.pool.apply_async(mne.io.RawArray(np.stack([self.eog]), mne.create_info(1, self.sfreq, 'eeg'), verbose=0).resample, args = (100.,))
eeg,_ = res_eeg.get(timeout=30)[0,:]
emg,_ = res_emg.get(timeout=30)[0,:]
eog,_ = res_eog.get(timeout=30)[0,:]
else:
eeg,_ = mne.io.RawArray(np.stack([self.eeg]), mne.create_info(1, self.sfreq, 'eeg'), verbose=0).resample(100.)[0,:]
emg,_ = mne.io.RawArray(np.stack([self.emg]), mne.create_info(1, self.sfreq, 'eeg'), verbose=0).resample(100.)[0,:]
eog,_ = mne.io.RawArray(np.stack([self.eog]), mne.create_info(1, self.sfreq, 'eeg'), verbose=0).resample(100.)[0,:]
self.sfreq = 100
self.eeg = eeg.squeeze()
self.emg = emg.squeeze()
self.eog = eog.squeeze()
示例7: create_empty_raw
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import create_info [as 別名]
def create_empty_raw():
n_channels = 3
n_points = 300
data = np.empty([n_channels, n_points])
fs = 200.
info = mne.create_info(ch_names=n_channels, sfreq=fs)
raw = mne.io.RawArray(data, info)
return raw
示例8: _simulate_data
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import create_info [as 別名]
def _simulate_data(fwd_fixed, source_vertno1, source_vertno2):
"""Simulate two oscillators on the cortex."""
sfreq = 50. # Hz.
base_freq = 10
t_rand = 0.001
std = 0.1
times = np.arange(10. * sfreq) / sfreq # 10 seconds of data
n_times = len(times)
# Generate an oscillator with varying frequency and phase lag.
iflaw = base_freq / sfreq + t_rand * np.random.randn(n_times)
signal1 = np.exp(1j * 2.0 * np.pi * np.cumsum(iflaw))
signal1 *= np.conj(signal1[0])
signal1 = signal1.real
# Add some random fluctuations to the signal.
signal1 += std * np.random.randn(n_times)
signal1 *= 1e-7
# Make identical signal
signal2 = signal1.copy()
# Add random fluctuations
signal1 += 1e-8 * np.random.randn(len(times))
signal2 += 1e-8 * np.random.randn(len(times))
# Construct a SourceEstimate object
stc = mne.SourceEstimate(
np.vstack((signal1[np.newaxis, :], signal2[np.newaxis, :])),
vertices=[np.array([source_vertno1]), np.array([source_vertno2])],
tmin=0,
tstep=1 / sfreq,
subject='sample',
)
# Create an info object that holds information about the sensors
info = mne.create_info(fwd_fixed['info']['ch_names'], sfreq,
ch_types='grad')
info.update(fwd_fixed['info']) # Merge in sensor position information
# Simulated sensor data.
raw = mne.apply_forward_raw(fwd_fixed, stc, info)
# Add noise
noise = random.randn(*raw._data.shape) * 1e-14
raw._data += noise
# Define a single epoch
epochs = mne.Epochs(raw, np.array([[0, 0, 1]]), event_id=1, tmin=0,
tmax=raw.times[-1], preload=True)
# Compute the cross-spectral density matrix
csd = csd_morlet(epochs, frequencies=[10, 20])
return csd
示例9: _connect
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import create_info [as 別名]
def _connect(self):
"""Connect to stream and record data to list."""
self._stream_inlet = _get_stream_inlet(self.lsl_predicate)
self._active = True
# Extract stream info.
info = self._stream_inlet.info()
# Get sampling frequency.
sfreq = float(info.nominal_srate())
# Get channel names.
ch_names = []
this_child = info.desc().child('channel')
for _ in range(info.channel_count()):
ch_names.append(this_child.child_value('name'))
this_child = this_child.next_sibling('channel')
# Get the EEG measurement unit (e.g., microvolts).
units = []
this_child = info.desc().child('channel')
for _ in range(info.channel_count()):
units.append(this_child.child_value('unit'))
this_child = this_child.next_sibling('channel')
if all(units):
self._eeg_unit = units[0]
else:
logger.warning("Could not find EEG measurement unit.")
# Add stimulus channel.
ch_types = ['eeg' for _ in ch_names] + ['stim']
ch_names.append('STI 014')
# Create mne.Info object.
try:
self.info = create_info(ch_names=ch_names,
sfreq=sfreq, ch_types=ch_types,
montage=self.key)
except ValueError:
self.info = create_info(ch_names=ch_names,
sfreq=sfreq, ch_types=ch_types,
montage=None)
logger.warning("Could not find montage for '{}'"
"".format(self.key))
# Add time of recording.
dt = datetime.datetime.now()
timestamp = time.mktime(dt.timetuple())
self.info['meas_date'] = [timestamp, 0]
# Record data in a while loop.
self._record_data_indefinitely(self._stream_inlet)
示例10: read_raw_xdf
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import create_info [as 別名]
def read_raw_xdf(fname, stream_id, *args, **kwargs):
"""Read XDF file.
Parameters
----------
fname : str
Name of the XDF file.
stream_id : int
ID (number) of the stream to load.
Returns
-------
raw : mne.io.Raw
XDF file data.
"""
from pyxdf import load_xdf, match_streaminfos, resolve_streams
streams, header = load_xdf(fname)
for stream in streams:
if stream["info"]["stream_id"] == stream_id:
break # stream found
n_chans = int(stream["info"]["channel_count"][0])
fs = float(stream["info"]["nominal_srate"][0])
labels, types, units = [], [], []
try:
for ch in stream["info"]["desc"][0]["channels"][0]["channel"]:
labels.append(str(ch["label"][0]))
if ch["type"]:
types.append(ch["type"][0])
if ch["unit"]:
units.append(ch["unit"][0])
except (TypeError, IndexError): # no channel labels found
pass
if not labels:
labels = [str(n) for n in range(n_chans)]
if not units:
units = ["NA" for _ in range(n_chans)]
info = mne.create_info(ch_names=labels, sfreq=fs, ch_types="eeg")
# convert from microvolts to volts if necessary
scale = np.array([1e-6 if u == "microvolts" else 1 for u in units])
raw = mne.io.RawArray((stream["time_series"] * scale).T, info)
raw._filenames = [fname]
first_samp = stream["time_stamps"][0]
markers = match_streaminfos(resolve_streams(fname), [{"type": "Markers"}])
for stream_id in markers:
for stream in streams:
if stream["info"]["stream_id"] == stream_id:
break
onsets = stream["time_stamps"] - first_samp
descriptions = [item for sub in stream["time_series"] for item in sub]
raw.annotations.append(onsets, [0] * len(onsets), descriptions)
return raw