本文整理匯總了Python中mne.Epochs方法的典型用法代碼示例。如果您正苦於以下問題:Python mne.Epochs方法的具體用法?Python mne.Epochs怎麽用?Python mne.Epochs使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mne
的用法示例。
在下文中一共展示了mne.Epochs方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_viz
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import Epochs [as 別名]
def test_viz():
"""Test viz."""
import matplotlib.pyplot as plt
set_matplotlib_defaults(plt)
events = mne.find_events(raw)
picks = mne.pick_channels(raw.info['ch_names'],
['MEG 2443', 'MEG 2442', 'MEG 2441'])
epochs = mne.Epochs(raw, events, picks=picks, baseline=(None, 0),
reject=None, preload=True,
event_id={'1': 1, '2': 2, '3': 3, '4': 4})
bad_epochs_idx = [0, 1, 3]
n_epochs, n_channels, _ = epochs.get_data().shape
bad_epochs = np.zeros(n_epochs, dtype=bool)
bad_epochs[bad_epochs_idx] = True
labels = np.zeros((n_epochs, n_channels))
reject_log = autoreject.RejectLog(bad_epochs, labels, epochs.ch_names)
reject_log.plot_epochs(epochs)
reject_log.plot()
reject_log.plot(orientation='horizontal')
pytest.raises(ValueError, reject_log.plot_epochs, epochs[:2])
pytest.raises(ValueError, reject_log.plot, 'down')
plt.close('all')
示例2: _vote_bad_epochs
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import Epochs [as 別名]
def _vote_bad_epochs(self, epochs, picks):
"""Each channel votes for an epoch as good or bad.
Parameters
----------
epochs : instance of mne.Epochs
The epochs object for which bad epochs must be found.
picks : array-like
The indices of the channels to consider.
"""
labels = np.zeros((len(epochs), len(epochs.ch_names)))
labels.fill(np.nan)
bad_sensor_counts = np.zeros((len(epochs),))
this_ch_names = [epochs.ch_names[p] for p in picks]
deltas = np.ptp(epochs.get_data()[:, picks], axis=-1).T
threshes = [self.threshes_[ch_name] for ch_name in this_ch_names]
for ch_idx, (delta, thresh) in enumerate(zip(deltas, threshes)):
bad_epochs_idx = np.where(delta > thresh)[0]
labels[:, picks[ch_idx]] = 0
labels[bad_epochs_idx, picks[ch_idx]] = 1
bad_sensor_counts = np.sum(labels == 1, axis=1)
return labels, bad_sensor_counts
示例3: fit_transform
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import Epochs [as 別名]
def fit_transform(self, epochs, return_log=False):
"""Estimate the rejection params and finds bad epochs.
Parameters
----------
epochs : instance of mne.Epochs
The epochs object which must be cleaned.
return_log : bool
If true the rejection log is also returned.
Returns
-------
epochs_clean : instance of mne.Epochs
The cleaned epochs.
reject_log : instance of autoreject.RejectLog
The rejection log. Returned only of return_log is True.
"""
return self.fit(epochs).transform(epochs, return_log=return_log)
示例4: make_epochs
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import Epochs [as 別名]
def make_epochs(z_hat, info, t_lim, n_times_atom=1):
"""Make Epochs on the activations of atoms.
n_splits, n_atoms, n_times_valid = z_hat.shape
n_trials, n_atoms, n_times_epoch = z_hat_epoch.shape
"""
n_splits, n_atoms, n_times_valid = z_hat.shape
n_times = n_times_valid + n_times_atom - 1
# pad with zeros
padding = np.zeros((n_splits, n_atoms, n_times_atom - 1))
z_hat = np.concatenate([z_hat, padding], axis=2)
# reshape into an unique time-serie per atom
z_hat = np.reshape(z_hat.swapaxes(0, 1), (n_atoms, n_splits * n_times))
# create trials around the events, using mne
new_info = mne.create_info(ch_names=n_atoms, sfreq=info['sfreq'])
rawarray = mne.io.RawArray(data=z_hat, info=new_info, verbose=False)
t_min, t_max = t_lim
epochs = mne.Epochs(rawarray, info['events'], info['event_id'], t_min,
t_max, verbose=False)
z_hat_epoched = epochs.get_data()
return z_hat_epoched
示例5: calc_noise_epoches_from_empty_room
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import Epochs [as 別名]
def calc_noise_epoches_from_empty_room(events_id, data_raw_fname, empty_room_raw_fname, from_t, to_t,
overwrite_epochs=False):
from mne.event import make_fixed_length_events
from mne.io import Raw
epochs_noise_dic = {}
epochs_noise_fnames = [get_cond_fname(EPO_NOISE, event) for event in events_id.keys()]
if np.all([os.path.isfile(fname) for fname in epochs_noise_fnames]) and not overwrite_epochs:
for event in events_id.keys():
epochs_noise_dic[event] = mne.read_epochs(get_cond_fname(EPO_NOISE, event))
else:
raw = Raw(data_raw_fname)
raw_noise = Raw(empty_room_raw_fname)
# raw_noise.info['bads'] = ['MEG0321'] # 1 bad MEG channel
picks = mne.pick_types(raw.info, meg=True)#, exclude='bads')
events_noise = make_fixed_length_events(raw_noise, 1)
epochs_noise = mne.Epochs(raw_noise, events_noise, 1, from_t,
to_t, proj=True, picks=picks, baseline=None, preload=True)
for event, event_id in events_id.items():
# then make sure the number of epochs is the same
epochs = mne.read_epochs(get_cond_fname(EPO, event))
epochs_noise_dic[event] = epochs_noise[:len(epochs.events)]
epochs_noise_dic[event].save(get_cond_fname(EPO_NOISE, event))
return epochs_noise_dic
示例6: clean_by_interp
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import Epochs [as 別名]
def clean_by_interp(inst, picks=None, verbose='progressbar'):
"""Clean epochs/evoked by LOOCV.
Parameters
----------
inst : instance of mne.Evoked or mne.Epochs
The evoked or epochs object.
picks : ndarray, shape(n_channels,) | None
The channels to be considered for autoreject. If None, defaults
to data channels {'meg', 'eeg'}.
verbose : 'tqdm', 'tqdm_notebook', 'progressbar' or False
The verbosity of progress messages.
If `'progressbar'`, use `mne.utils.ProgressBar`.
If `'tqdm'`, use `tqdm.tqdm`.
If `'tqdm_notebook'`, use `tqdm.tqdm_notebook`.
If False, suppress all output messages.
Returns
-------
inst_clean : instance of mne.Evoked or mne.Epochs
Instance after interpolation of bad channels.
"""
return _clean_by_interp(inst, picks=picks, verbose=verbose)
示例7: test_global_autoreject
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import Epochs [as 別名]
def test_global_autoreject():
"""Test global autoreject."""
event_id = None
tmin, tmax = -0.2, 0.5
events = mne.find_events(raw)
picks = mne.pick_types(raw.info, meg=True, eeg=True, stim=False,
eog=True, exclude=[])
# raise error if preload is false
epochs = mne.Epochs(raw, events, event_id, tmin, tmax,
picks=picks, baseline=(None, 0),
reject=None, preload=False)
# Test get_rejection_thresholds.
reject1 = get_rejection_threshold(epochs, decim=1, random_state=42)
reject2 = get_rejection_threshold(epochs, decim=1, random_state=42)
reject3 = get_rejection_threshold(epochs, decim=2, random_state=42)
tols = dict(eeg=5e-6, eog=5e-6, grad=10e-12, mag=5e-15)
assert reject1, isinstance(reject1, dict)
for key, value in list(reject1.items()):
assert reject1[key] == reject2[key]
assert abs(reject1[key] - reject3[key]) < tols[key]
reject = get_rejection_threshold(epochs, decim=4, ch_types='eeg')
assert 'eog' not in reject
assert 'eeg' in reject
pytest.raises(ValueError, get_rejection_threshold, epochs,
decim=4, ch_types=5)
示例8: test_io
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import Epochs [as 別名]
def test_io():
"""Test IO functionality."""
event_id = None
tmin, tmax = -0.2, 0.5
events = mne.find_events(raw)
savedir = _TempDir()
fname = op.join(savedir, 'autoreject.hdf5')
include = [u'EEG %03d' % i for i in range(1, 45, 3)]
picks = mne.pick_types(raw.info, meg=False, eeg=False, stim=False,
eog=True, include=include, exclude=[])
# raise error if preload is false
epochs = mne.Epochs(raw, events, event_id, tmin, tmax,
picks=picks, baseline=(None, 0), decim=4,
reject=None, preload=True)[:10]
ar = AutoReject(cv=2, random_state=42, n_interpolate=[1],
consensus=[0.5], verbose=False)
ar.save(fname) # save without fitting
# check that fit after saving is the same as fit
# without saving
ar2 = read_auto_reject(fname)
ar.fit(epochs)
ar2.fit(epochs)
assert np.sum([ar.threshes_[k] - ar2.threshes_[k]
for k in ar.threshes_.keys()]) == 0.
pytest.raises(ValueError, ar.save, fname)
ar.save(fname, overwrite=True)
ar3 = read_auto_reject(fname)
epochs_clean1, reject_log1 = ar.transform(epochs, return_log=True)
epochs_clean2, reject_log2 = ar3.transform(epochs, return_log=True)
assert_array_equal(epochs_clean1.get_data(), epochs_clean2.get_data())
assert_array_equal(reject_log1.labels, reject_log2.labels)
示例9: test_utils
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import Epochs [as 別名]
def test_utils():
"""Test utils."""
event_id = {'Visual/Left': 3}
tmin, tmax = -0.2, 0.5
events = mne.find_events(raw)
picks = mne.pick_channels(raw.info['ch_names'],
['MEG 2443', 'MEG 2442', 'MEG 2441'])
epochs = mne.Epochs(raw, events, event_id, tmin, tmax,
picks=picks, baseline=(None, 0),
reject=None, preload=True)
this_epoch = epochs.copy()
epochs_clean = clean_by_interp(this_epoch)
assert_array_equal(this_epoch.get_data(), epochs.get_data())
pytest.raises(AssertionError, assert_array_equal, epochs_clean.get_data(),
this_epoch.get_data())
picks_meg = mne.pick_types(evoked.info, meg='grad', eeg=False, exclude=[])
picks_eeg = mne.pick_types(evoked.info, meg=False, eeg=True, exclude=[])
picks_bad_meg = mne.pick_channels(evoked.ch_names, include=['MEG 2443'])
picks_bad_eeg = mne.pick_channels(evoked.ch_names, include=['EEG 053'])
evoked_orig = evoked.copy()
for picks, picks_bad in zip([picks_meg, picks_eeg],
[picks_bad_meg, picks_bad_eeg]):
evoked_autoreject = interpolate_bads(evoked, picks=picks,
reset_bads=False)
evoked.interpolate_bads(reset_bads=False)
assert_array_equal(evoked.data[picks_bad],
evoked_autoreject.data[picks_bad])
pytest.raises(AssertionError, assert_array_equal,
evoked_orig.data[picks_bad], evoked.data[picks_bad])
# test that autoreject EEG interpolation code behaves the same as MNE
evoked_ar = evoked_orig.copy()
evoked_mne = evoked_orig.copy()
origin = _check_origin('auto', evoked_ar.info)
_interpolate_bads_eeg(evoked_ar, picks=None)
mne.channels.interpolation._interpolate_bads_eeg(evoked_mne, origin=origin)
assert_array_almost_equal(evoked_ar.data, evoked_mne.data)
示例10: test_interpolate_bads
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import Epochs [as 別名]
def test_interpolate_bads():
"""Test interpolate bads."""
event_id = None
events = mne.find_events(raw)
tmin, tmax = -0.2, 0.5
for ii, ch_name in enumerate(raw.info['ch_names'][:14]):
raw.set_channel_types({ch_name: 'bio'})
raw.rename_channels({ch_name: 'BIO%02d' % ii})
picks = mne.pick_types(raw.info, meg='grad', eeg=False, eog=False)
epochs = mne.Epochs(raw, events, event_id, tmin, tmax,
baseline=(None, 0), decim=10,
reject=None, preload=True)[:10]
epochs.info['bads'] = ['MEG 2212']
interpolate_bads(epochs, picks)
示例11: get_reject_log
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import Epochs [as 別名]
def get_reject_log(self, epochs, threshes=None, picks=None):
"""Get rejection logs from epochs.
.. note::
If multiple channel types are present, reject_log.bad_epochs
reflects the union of bad epochs across channel types.
Parameters
----------
epochs : instance of mne.Epochs
The epochs from which to get the drop logs.
picks : np.ndarray, shape(n_channels, ) | list | None
The channel indices to be used. If None, the .picks attribute
will be used.
Returns
-------
reject_log : instance of autoreject.RejectLog
The rejection log.
"""
picks = (self.picks_ if picks is None else picks)
picks_by_type = _get_picks_by_type(picks=picks, info=epochs.info)
assert len(picks_by_type) == 1
ch_type, this_picks = picks_by_type[0]
del picks
labels, bad_sensor_counts = self._vote_bad_epochs(
epochs, picks=this_picks)
labels = self._get_epochs_interpolation(
epochs, labels=labels, picks=this_picks,
n_interpolate=self.n_interpolate_[ch_type])
assert len(labels) == len(epochs)
bad_epochs = self._get_bad_epochs(
bad_sensor_counts, ch_type=ch_type, picks=this_picks)
reject_log = RejectLog(labels=labels, bad_epochs=bad_epochs,
ch_names=epochs.ch_names)
return reject_log
示例12: transform
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import Epochs [as 別名]
def transform(self, epochs, return_log=False):
"""Fix and find the bad epochs.
Parameters
----------
epochs : instance of mne.Epochs
The epochs object for which bad epochs must be found.
return_log : bool
If true the rejection log is also returned.
Returns
-------
epochs_clean : instance of mne.Epochs
The cleaned epochs.
reject_log : instance of autoreject.RejectLog
The rejection log. Returned only of return_log is True.
"""
_check_data(epochs, picks=self.picks, verbose=self.verbose,
ch_constraint='data_channels')
reject_log = self.get_reject_log(epochs, picks=None)
if np.all(reject_log.bad_epochs):
raise ValueError('All epochs are bad. Sorry.')
epochs_clean = epochs.copy()
# this one knows how to handle picks.
_apply_interp(reject_log, self, epochs_clean, self.threshes_,
self.picks_, self.dots, self.verbose)
_apply_drop(reject_log, self, epochs_clean, self.threshes_,
self.picks_, self.verbose)
if return_log:
return epochs_clean, reject_log
else:
return epochs_clean
示例13: eeg_to_df
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import Epochs [as 別名]
def eeg_to_df(eeg, index=None, include="all", exclude=None, hemisphere="both", central=True):
"""
Convert mne Raw or Epochs object to dataframe or dict of dataframes.
DOCS INCOMPLETE :(
"""
if isinstance(eeg, mne.Epochs):
data = {}
if index is None:
index = range(len(eeg))
for epoch_index, epoch in zip(index, eeg.get_data()):
epoch = pd.DataFrame(epoch.T)
epoch.columns = eeg.ch_names
epoch.index = eeg.times
selection = eeg_select_electrodes(eeg, include=include, exclude=exclude, hemisphere=hemisphere, central=central)
data[epoch_index] = epoch[selection]
else: # it might be a Raw object
data = eeg.get_data().T
data = pd.DataFrame(data)
data.columns = eeg.ch_names
data.index = eeg.times
return(data)
示例14: epoch_data
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import Epochs [as 別名]
def epoch_data(self, events, tmin, tmax, baseline):
epochs = mne.Epochs(self.current["data"], self.current["events"],
event_id=events, tmin=tmin, tmax=tmax,
baseline=baseline, preload=True)
self.history.append(f'data = mne.Epochs(data, events, '
f'event_id={events}, tmin={tmin}, tmax={tmax}, '
f'baseline={baseline}, preload=True)')
self.current["data"] = epochs
self.current["dtype"] = "epochs"
self.current["events"] = self.current["data"].events
self.current["name"] += " (epoched)"
示例15: init_data
# 需要導入模塊: import mne [as 別名]
# 或者: from mne import Epochs [as 別名]
def init_data():
data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif'
fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif'
tmin, tmax, event_id = -0.2, 0.5, 1
# Setup for reading the raw data
raw = io.read_raw_fif(raw_fname)
events = mne.find_events(raw, stim_channel='STI 014')
inverse_operator = read_inverse_operator(fname_inv)
# Setting the label
label = mne.read_label(data_path + '/MEG/sample/labels/Aud-lh.label')
include = []
raw.info['bads'] += ['MEG 2443', 'EEG 053'] # bads + 2 more
# picks MEG gradiometers
picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=True,
stim=False, include=include, exclude='bads')
# Load condition 1
event_id = 1
# Use linear detrend to reduce any edge artifacts
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks,
baseline=(None, 0), reject=dict(grad=4000e-13, eog=150e-6),
preload=True, detrend=1)
return epochs, inverse_operator, label