當前位置: 首頁>>代碼示例>>Python>>正文


Python ops.sigmoid_focal_loss方法代碼示例

本文整理匯總了Python中mmdet.ops.sigmoid_focal_loss方法的典型用法代碼示例。如果您正苦於以下問題:Python ops.sigmoid_focal_loss方法的具體用法?Python ops.sigmoid_focal_loss怎麽用?Python ops.sigmoid_focal_loss使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mmdet.ops的用法示例。


在下文中一共展示了ops.sigmoid_focal_loss方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: sigmoid_focal_loss

# 需要導入模塊: from mmdet import ops [as 別名]
# 或者: from mmdet.ops import sigmoid_focal_loss [as 別名]
def sigmoid_focal_loss(pred,
                       target,
                       weight=None,
                       gamma=2.0,
                       alpha=0.25,
                       reduction='mean',
                       avg_factor=None):
    # Function.apply does not accept keyword arguments, so the decorator
    # "weighted_loss" is not applicable
    loss = _sigmoid_focal_loss(pred, target, gamma, alpha)
    # TODO: find a proper way to handle the shape of weight
    if weight is not None:
        weight = weight.view(-1, 1)
    loss = weight_reduce_loss(loss, weight, reduction, avg_factor)
    return loss 
開發者ID:xvjiarui,項目名稱:GCNet,代碼行數:17,代碼來源:focal_loss.py

示例2: sigmoid_focal_loss

# 需要導入模塊: from mmdet import ops [as 別名]
# 或者: from mmdet.ops import sigmoid_focal_loss [as 別名]
def sigmoid_focal_loss(pred,
                       target,
                       weight=None,
                       gamma=2.0,
                       alpha=0.25,
                       reduction='mean',
                       avg_factor=None):
    r"""A warpper of cuda version `Focal Loss
    <https://arxiv.org/abs/1708.02002>`_.

    Args:
        pred (torch.Tensor): The prediction with shape (N, C), C is the number
            of classes.
        target (torch.Tensor): The learning label of the prediction.
        weight (torch.Tensor, optional): Sample-wise loss weight.
        gamma (float, optional): The gamma for calculating the modulating
            factor. Defaults to 2.0.
        alpha (float, optional): A balanced form for Focal Loss.
            Defaults to 0.25.
        reduction (str, optional): The method used to reduce the loss into
            a scalar. Defaults to 'mean'. Options are "none", "mean" and "sum".
        avg_factor (int, optional): Average factor that is used to average
            the loss. Defaults to None.
    """
    # Function.apply does not accept keyword arguments, so the decorator
    # "weighted_loss" is not applicable
    loss = _sigmoid_focal_loss(pred, target, gamma, alpha)
    if weight is not None:
        if weight.shape != loss.shape:
            if weight.size(0) == loss.size(0):
                # For most cases, weight is of shape (num_priors, ),
                #  which means it does not have the second axis num_class
                weight = weight.view(-1, 1)
            else:
                # Sometimes, weight per anchor per class is also needed. e.g.
                #  in FSAF. But it may be flattened of shape
                #  (num_priors x num_class, ), while loss is still of shape
                #  (num_priors, num_class).
                assert weight.numel() == loss.numel()
                weight = weight.view(loss.size(0), -1)
        assert weight.ndim == loss.ndim
    loss = weight_reduce_loss(loss, weight, reduction, avg_factor)
    return loss 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:45,代碼來源:focal_loss.py


注:本文中的mmdet.ops.sigmoid_focal_loss方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。