本文整理匯總了Python中mmdet.ops.MaskedConv2d方法的典型用法代碼示例。如果您正苦於以下問題:Python ops.MaskedConv2d方法的具體用法?Python ops.MaskedConv2d怎麽用?Python ops.MaskedConv2d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mmdet.ops
的用法示例。
在下文中一共展示了ops.MaskedConv2d方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _init_layers
# 需要導入模塊: from mmdet import ops [as 別名]
# 或者: from mmdet.ops import MaskedConv2d [as 別名]
def _init_layers(self):
self.relu = nn.ReLU(inplace=True)
self.conv_loc = nn.Conv2d(self.feat_channels, 1, 1)
self.conv_shape = nn.Conv2d(self.feat_channels, self.num_anchors * 2,
1)
self.feature_adaption = FeatureAdaption(
self.feat_channels,
self.feat_channels,
kernel_size=3,
deformable_groups=self.deformable_groups)
self.conv_cls = MaskedConv2d(self.feat_channels,
self.num_anchors * self.cls_out_channels,
1)
self.conv_reg = MaskedConv2d(self.feat_channels, self.num_anchors * 4,
1)
示例2: _init_layers
# 需要導入模塊: from mmdet import ops [as 別名]
# 或者: from mmdet.ops import MaskedConv2d [as 別名]
def _init_layers(self):
self.relu = nn.ReLU(inplace=True)
self.conv_loc = nn.Conv2d(self.in_channels, 1, 1)
self.conv_shape = nn.Conv2d(self.in_channels, self.num_anchors * 2, 1)
self.feature_adaption = FeatureAdaption(
self.in_channels,
self.feat_channels,
kernel_size=3,
deformable_groups=self.deformable_groups)
self.conv_cls = MaskedConv2d(self.feat_channels,
self.num_anchors * self.cls_out_channels,
1)
self.conv_reg = MaskedConv2d(self.feat_channels, self.num_anchors * 4,
1)
示例3: _init_layers
# 需要導入模塊: from mmdet import ops [as 別名]
# 或者: from mmdet.ops import MaskedConv2d [as 別名]
def _init_layers(self):
"""Initialize layers of the head."""
self.relu = nn.ReLU(inplace=True)
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
self.cls_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
self.reg_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
self.conv_loc = nn.Conv2d(self.feat_channels, 1, 1)
self.conv_shape = nn.Conv2d(self.feat_channels, self.num_anchors * 2,
1)
self.feature_adaption_cls = FeatureAdaption(
self.feat_channels,
self.feat_channels,
kernel_size=3,
deformable_groups=self.deformable_groups)
self.feature_adaption_reg = FeatureAdaption(
self.feat_channels,
self.feat_channels,
kernel_size=3,
deformable_groups=self.deformable_groups)
self.retina_cls = MaskedConv2d(
self.feat_channels,
self.num_anchors * self.cls_out_channels,
3,
padding=1)
self.retina_reg = MaskedConv2d(
self.feat_channels, self.num_anchors * 4, 3, padding=1)
示例4: _init_layers
# 需要導入模塊: from mmdet import ops [as 別名]
# 或者: from mmdet.ops import MaskedConv2d [as 別名]
def _init_layers(self):
self.relu = nn.ReLU(inplace=True)
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
self.cls_convs.append(
ConvModule(chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
self.reg_convs.append(
ConvModule(chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
self.conv_loc = nn.Conv2d(self.feat_channels, 1, 1)
self.conv_shape = nn.Conv2d(self.feat_channels, self.num_anchors * 2,
1)
self.feature_adaption_cls = FeatureAdaption(
self.feat_channels,
self.feat_channels,
kernel_size=3,
deformable_groups=self.deformable_groups)
self.feature_adaption_reg = FeatureAdaption(
self.feat_channels,
self.feat_channels,
kernel_size=3,
deformable_groups=self.deformable_groups)
self.retina_cls = MaskedConv2d(self.feat_channels,
self.num_anchors *
self.cls_out_channels,
3,
padding=1)
self.retina_reg = MaskedConv2d(self.feat_channels,
self.num_anchors * 4,
3,
padding=1)
示例5: _init_layers
# 需要導入模塊: from mmdet import ops [as 別名]
# 或者: from mmdet.ops import MaskedConv2d [as 別名]
def _init_layers(self):
self.relu = nn.ReLU(inplace=True)
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
self.cls_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
self.reg_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
self.conv_loc = nn.Conv2d(self.feat_channels, 1, 1)
self.conv_shape = nn.Conv2d(self.feat_channels, self.num_anchors * 2,
1)
self.feature_adaption_cls = FeatureAdaption(
self.feat_channels,
self.feat_channels,
kernel_size=3,
deformable_groups=self.deformable_groups)
self.feature_adaption_reg = FeatureAdaption(
self.feat_channels,
self.feat_channels,
kernel_size=3,
deformable_groups=self.deformable_groups)
self.retina_cls = MaskedConv2d(
self.feat_channels,
self.num_anchors * self.cls_out_channels,
3,
padding=1)
self.retina_reg = MaskedConv2d(
self.feat_channels, self.num_anchors * 4, 3, padding=1)