當前位置: 首頁>>代碼示例>>Python>>正文


Python models.build_detector方法代碼示例

本文整理匯總了Python中mmdet.models.build_detector方法的典型用法代碼示例。如果您正苦於以下問題:Python models.build_detector方法的具體用法?Python models.build_detector怎麽用?Python models.build_detector使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mmdet.models的用法示例。


在下文中一共展示了models.build_detector方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: init_detector

# 需要導入模塊: from mmdet import models [as 別名]
# 或者: from mmdet.models import build_detector [as 別名]
def init_detector(config, checkpoint=None, device='cuda:0'):
    """Initialize a detector from config file.

    Args:
        config (str or :obj:`mmcv.Config`): Config file path or the config
            object.
        checkpoint (str, optional): Checkpoint path. If left as None, the model
            will not load any weights.

    Returns:
        nn.Module: The constructed detector.
    """
    if isinstance(config, str):
        config = mmcv.Config.fromfile(config)
    elif not isinstance(config, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        f'but got {type(config)}')
    config.model.pretrained = None
    model = build_detector(config.model, test_cfg=config.test_cfg)
    if checkpoint is not None:
        checkpoint = load_checkpoint(model, checkpoint)
        if 'CLASSES' in checkpoint['meta']:
            model.CLASSES = checkpoint['meta']['CLASSES']
        else:
            warnings.simplefilter('once')
            warnings.warn('Class names are not saved in the checkpoint\'s '
                          'meta data, use COCO classes by default.')
            model.CLASSES = get_classes('coco')
    model.cfg = config  # save the config in the model for convenience
    model.to(device)
    model.eval()
    return model 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:34,代碼來源:inference.py

示例2: model_aug_test_template

# 需要導入模塊: from mmdet import models [as 別名]
# 或者: from mmdet.models import build_detector [as 別名]
def model_aug_test_template(cfg_file):
    # get config
    cfg = mmcv.Config.fromfile(cfg_file)
    # init model
    cfg.model.pretrained = None
    model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)

    # init test pipeline and set aug test
    load_cfg, multi_scale_cfg = cfg.test_pipeline
    multi_scale_cfg['flip'] = True
    multi_scale_cfg['img_scale'] = [(1333, 800), (800, 600), (640, 480)]

    load = build_from_cfg(load_cfg, PIPELINES)
    transform = build_from_cfg(multi_scale_cfg, PIPELINES)

    results = dict(
        img_prefix=osp.join(osp.dirname(__file__), '../data'),
        img_info=dict(filename='color.jpg'))
    results = transform(load(results))
    assert len(results['img']) == 6
    assert len(results['img_metas']) == 6

    results['img'] = [collate([x]) for x in results['img']]
    results['img_metas'] = [collate([x]).data[0] for x in results['img_metas']]
    # aug test the model
    model.eval()
    with torch.no_grad():
        aug_result = model(return_loss=False, rescale=True, **results)
    return aug_result 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:31,代碼來源:test_models_aug_test.py

示例3: _context_for_ohem

# 需要導入模塊: from mmdet import models [as 別名]
# 或者: from mmdet.models import build_detector [as 別名]
def _context_for_ohem():
    import sys
    from os.path import dirname
    sys.path.insert(0, dirname(dirname(dirname(__file__))))
    from test_forward import _get_detector_cfg

    model, train_cfg, test_cfg = _get_detector_cfg(
        'faster_rcnn/faster_rcnn_r50_fpn_ohem_1x_coco.py')
    model['pretrained'] = None

    from mmdet.models import build_detector
    context = build_detector(
        model, train_cfg=train_cfg, test_cfg=test_cfg).roi_head
    return context 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:16,代碼來源:test_sampler.py

示例4: test_rpn_forward

# 需要導入模塊: from mmdet import models [as 別名]
# 或者: from mmdet.models import build_detector [as 別名]
def test_rpn_forward():
    model, train_cfg, test_cfg = _get_detector_cfg(
        'rpn/rpn_r50_fpn_1x_coco.py')
    model['pretrained'] = None

    from mmdet.models import build_detector
    detector = build_detector(model, train_cfg=train_cfg, test_cfg=test_cfg)

    input_shape = (1, 3, 224, 224)
    mm_inputs = _demo_mm_inputs(input_shape)

    imgs = mm_inputs.pop('imgs')
    img_metas = mm_inputs.pop('img_metas')

    # Test forward train
    gt_bboxes = mm_inputs['gt_bboxes']
    losses = detector.forward(
        imgs, img_metas, gt_bboxes=gt_bboxes, return_loss=True)
    assert isinstance(losses, dict)

    # Test forward test
    with torch.no_grad():
        img_list = [g[None, :] for g in imgs]
        batch_results = []
        for one_img, one_meta in zip(img_list, img_metas):
            result = detector.forward([one_img], [[one_meta]],
                                      return_loss=False)
            batch_results.append(result) 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:30,代碼來源:test_forward.py

示例5: test_single_stage_forward_cpu

# 需要導入模塊: from mmdet import models [as 別名]
# 或者: from mmdet.models import build_detector [as 別名]
def test_single_stage_forward_cpu(cfg_file):
    model, train_cfg, test_cfg = _get_detector_cfg(cfg_file)
    model['pretrained'] = None

    from mmdet.models import build_detector
    detector = build_detector(model, train_cfg=train_cfg, test_cfg=test_cfg)

    input_shape = (1, 3, 300, 300)
    mm_inputs = _demo_mm_inputs(input_shape)

    imgs = mm_inputs.pop('imgs')
    img_metas = mm_inputs.pop('img_metas')

    # Test forward train
    gt_bboxes = mm_inputs['gt_bboxes']
    gt_labels = mm_inputs['gt_labels']
    losses = detector.forward(
        imgs,
        img_metas,
        gt_bboxes=gt_bboxes,
        gt_labels=gt_labels,
        return_loss=True)
    assert isinstance(losses, dict)

    # Test forward test
    with torch.no_grad():
        img_list = [g[None, :] for g in imgs]
        batch_results = []
        for one_img, one_meta in zip(img_list, img_metas):
            result = detector.forward([one_img], [[one_meta]],
                                      return_loss=False)
            batch_results.append(result) 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:34,代碼來源:test_forward.py

示例6: init_detector

# 需要導入模塊: from mmdet import models [as 別名]
# 或者: from mmdet.models import build_detector [as 別名]
def init_detector(config, checkpoint=None, device='cuda:0'):
    """Initialize a detector from config file.

    Args:
        config (str or :obj:`mmcv.Config`): Config file path or the config
            object.
        checkpoint (str, optional): Checkpoint path. If left as None, the model
            will not load any weights.

    Returns:
        nn.Module: The constructed detector.
    """
    if isinstance(config, str):
        config = mmcv.Config.fromfile(config)
    elif not isinstance(config, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        'but got {}'.format(type(config)))
    config.model.pretrained = None
    model = build_detector(config.model, test_cfg=config.test_cfg)
    if checkpoint is not None:
        checkpoint = load_checkpoint(model, checkpoint)
        if 'CLASSES' in checkpoint['meta']:
            model.CLASSES = checkpoint['meta']['CLASSES']
        else:
            warnings.warn('Class names are not saved in the checkpoint\'s '
                          'meta data, use COCO classes by default.')
            model.CLASSES = get_classes('coco')
    model.cfg = config  # save the config in the model for convenience
    model.to(device)
    model.eval()
    return model 
開發者ID:dingjiansw101,項目名稱:AerialDetection,代碼行數:33,代碼來源:inference.py

示例7: main

# 需要導入模塊: from mmdet import models [as 別名]
# 或者: from mmdet.models import build_detector [as 別名]
def main():

    args = parse_args()

    if len(args.shape) == 1:
        input_shape = (3, args.shape[0], args.shape[0])
    elif len(args.shape) == 2:
        input_shape = (3, ) + tuple(args.shape)
    else:
        raise ValueError('invalid input shape')

    cfg = Config.fromfile(args.config)
    model = build_detector(
        cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg).cuda()
    model.eval()

    if hasattr(model, 'forward_dummy'):
        model.forward = model.forward_dummy
    else:
        raise NotImplementedError(
            'FLOPs counter is currently not currently supported with {}'.
            format(model.__class__.__name__))

    flops, params = get_model_complexity_info(model, input_shape)
    split_line = '=' * 30
    print('{0}\nInput shape: {1}\nFlops: {2}\nParams: {3}\n{0}'.format(
        split_line, input_shape, flops, params)) 
開發者ID:dingjiansw101,項目名稱:AerialDetection,代碼行數:29,代碼來源:get_flops.py

示例8: init_detector

# 需要導入模塊: from mmdet import models [as 別名]
# 或者: from mmdet.models import build_detector [as 別名]
def init_detector(config, checkpoint=None, device='cuda:0'):
    """Initialize a detector from config file.

    Args:
        config (str or :obj:`mmcv.Config`): Config file path or the config
            object.
        checkpoint (str, optional): Checkpoint path. If left as None, the model
            will not load any weights.

    Returns:
        nn.Module: The constructed detector.
    """
    if isinstance(config, str):
        config = mmcv.Config.fromfile(config)
    elif not isinstance(config, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        'but got {}'.format(type(config)))
    config.model.pretrained = None
    model = build_detector(config.model, test_cfg=config.test_cfg)
    if checkpoint is not None:
        checkpoint = load_checkpoint(model, checkpoint)
        if 'CLASSES' in checkpoint['meta']:
            model.CLASSES = checkpoint['meta']['classes']
        else:
            warnings.warn('Class names are not saved in the checkpoint\'s '
                          'meta data, use COCO classes by default.')
            model.CLASSES = get_classes('coco')
    model.cfg = config  # save the config in the model for convenience
    model.to(device)
    model.eval()
    return model 
開發者ID:STVIR,項目名稱:Grid-R-CNN,代碼行數:33,代碼來源:inference.py

示例9: test_ssd300_forward

# 需要導入模塊: from mmdet import models [as 別名]
# 或者: from mmdet.models import build_detector [as 別名]
def test_ssd300_forward():
    model, train_cfg, test_cfg = _get_detector_cfg('ssd300_coco.py')
    model['pretrained'] = None

    from mmdet.models import build_detector
    detector = build_detector(model, train_cfg=train_cfg, test_cfg=test_cfg)

    input_shape = (1, 3, 300, 300)
    mm_inputs = _demo_mm_inputs(input_shape)

    imgs = mm_inputs.pop('imgs')
    img_metas = mm_inputs.pop('img_metas')

    # Test forward train
    gt_bboxes = mm_inputs['gt_bboxes']
    gt_labels = mm_inputs['gt_labels']
    losses = detector.forward(
        imgs,
        img_metas,
        gt_bboxes=gt_bboxes,
        gt_labels=gt_labels,
        return_loss=True)
    assert isinstance(losses, dict)

    # Test forward test
    with torch.no_grad():
        img_list = [g[None, :] for g in imgs]
        batch_results = []
        for one_img, one_meta in zip(img_list, img_metas):
            result = detector.forward([one_img], [[one_meta]],
                                      return_loss=False)
            batch_results.append(result) 
開發者ID:zl1994,項目名稱:IoU-Uniform-R-CNN,代碼行數:34,代碼來源:test_forward.py

示例10: test_rpn_forward

# 需要導入模塊: from mmdet import models [as 別名]
# 或者: from mmdet.models import build_detector [as 別名]
def test_rpn_forward():
    model, train_cfg, test_cfg = _get_detector_cfg('rpn_r50_fpn_1x.py')
    model['pretrained'] = None

    from mmdet.models import build_detector
    detector = build_detector(model, train_cfg=train_cfg, test_cfg=test_cfg)

    input_shape = (1, 3, 224, 224)
    mm_inputs = _demo_mm_inputs(input_shape)

    imgs = mm_inputs.pop('imgs')
    img_metas = mm_inputs.pop('img_metas')

    # Test forward train
    gt_bboxes = mm_inputs['gt_bboxes']
    losses = detector.forward(
        imgs, img_metas, gt_bboxes=gt_bboxes, return_loss=True)
    assert isinstance(losses, dict)

    # Test forward test
    with torch.no_grad():
        img_list = [g[None, :] for g in imgs]
        batch_results = []
        for one_img, one_meta in zip(img_list, img_metas):
            result = detector.forward([one_img], [[one_meta]],
                                      return_loss=False)
            batch_results.append(result) 
開發者ID:zl1994,項目名稱:IoU-Uniform-R-CNN,代碼行數:29,代碼來源:test_forward.py

示例11: load_model

# 需要導入模塊: from mmdet import models [as 別名]
# 或者: from mmdet.models import build_detector [as 別名]
def load_model():
    model = build_detector(cfg.model, test_cfg=cfg.test_cfg)
    _ = load_checkpoint(model, model_cfgs[0][1]) # 7 it/s
    return model 
開發者ID:lxy5513,項目名稱:hrnet,代碼行數:6,代碼來源:high_api.py


注:本文中的mmdet.models.build_detector方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。