本文整理匯總了Python中mmdet.datasets.build_dataset方法的典型用法代碼示例。如果您正苦於以下問題:Python datasets.build_dataset方法的具體用法?Python datasets.build_dataset怎麽用?Python datasets.build_dataset使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mmdet.datasets
的用法示例。
在下文中一共展示了datasets.build_dataset方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test
# 需要導入模塊: from mmdet import datasets [as 別名]
# 或者: from mmdet.datasets import build_dataset [as 別名]
def test():
from tqdm import trange
import cv2
print('debug mode '*10 )
args = parse_args()
cfg = Config.fromfile(args.config)
cfg.gpus = 1
dataset = build_dataset(cfg.data.train)
embed(header='123123')
# def visual(i):
# img = dataset[i]['img'].data
# img = img.permute(1,2,0) + 100
# img = img.data.cpu().numpy()
# cv2.imwrite('./trash/resize_v1.jpg',img)
# embed(header='check data resizer')
示例2: __init__
# 需要導入模塊: from mmdet import datasets [as 別名]
# 或者: from mmdet.datasets import build_dataset [as 別名]
def __init__(self, dataset, interval=1):
if isinstance(dataset, Dataset):
self.dataset = dataset
elif isinstance(dataset, dict):
self.dataset = datasets.build_dataset(dataset, {'test_mode': True})
else:
raise TypeError(
'dataset must be a Dataset object or a dict, not {}'.format(
type(dataset)))
self.interval = interval
示例3: main
# 需要導入模塊: from mmdet import datasets [as 別名]
# 或者: from mmdet.datasets import build_dataset [as 別名]
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
cfg.model.pretrained = None
cfg.data.test.test_mode = True
# build the dataloader
# TODO: support multiple images per gpu (only minor changes are needed)
dataset = build_dataset(cfg.data.test)
data_loader = build_dataloader(
dataset,
samples_per_gpu=1,
workers_per_gpu=cfg.data.workers_per_gpu,
dist=False,
shuffle=False)
# build the model and load checkpoint
model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
wrap_fp16_model(model)
load_checkpoint(model, args.checkpoint, map_location='cpu')
if args.fuse_conv_bn:
model = fuse_module(model)
model = MMDataParallel(model, device_ids=[0])
model.eval()
# the first several iterations may be very slow so skip them
num_warmup = 5
pure_inf_time = 0
# benchmark with 2000 image and take the average
for i, data in enumerate(data_loader):
torch.cuda.synchronize()
start_time = time.perf_counter()
with torch.no_grad():
model(return_loss=False, rescale=True, **data)
torch.cuda.synchronize()
elapsed = time.perf_counter() - start_time
if i >= num_warmup:
pure_inf_time += elapsed
if (i + 1) % args.log_interval == 0:
fps = (i + 1 - num_warmup) / pure_inf_time
print(f'Done image [{i + 1:<3}/ 2000], fps: {fps:.1f} img / s')
if (i + 1) == 2000:
pure_inf_time += elapsed
fps = (i + 1 - num_warmup) / pure_inf_time
print(f'Overall fps: {fps:.1f} img / s')
break
示例4: main
# 需要導入模塊: from mmdet import datasets [as 別名]
# 或者: from mmdet.datasets import build_dataset [as 別名]
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
# set cudnn_benchmark
# 在圖片輸入尺度固定時開啟,可以加速.一般都是關的,隻有在固定尺度的網絡如SSD512中才開啟
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
# update configs according to CLI args
if args.work_dir is not None:
# 創建工作目錄存放訓練文件,如果不鍵入,會自動按照py配置文件生成對應的目錄
cfg.work_dir = args.work_dir
if args.resume_from is not None:
# 斷點繼續訓練的權值文件
cfg.resume_from = args.resume_from
cfg.gpus = args.gpus
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# init logger before other steps
logger = get_root_logger(cfg.log_level)
logger.info('Distributed training: {}'.format(distributed))
# set random seeds
if args.seed is not None:
logger.info('Set random seed to {}'.format(args.seed))
set_random_seed(args.seed)
# ipdb.set_trace(context=35)
# 搭建模型
model = build_detector(
cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)
# 將訓練配置傳入
train_dataset = build_dataset(cfg.data.train)
if cfg.checkpoint_config is not None:
# save mmdet version, config file content and class names in checkpoints as meta data
# 要注意的是,以前發布的模型是不存這個類別等信息的,
# 用的默認COCO或者VOC參數,所以如果用以前訓練好的模型檢測時會提醒warning一下,無傷大雅
cfg.checkpoint_config.meta = dict(
mmdet_version=__version__,
config=cfg.text,
CLASSES=train_dataset.CLASSES)
# add an attribute for visualization convenience
model.CLASSES = train_dataset.CLASSES # model的CLASSES屬性本來沒有的,但是python不用提前聲明,再賦值的時候自動定義變量
train_detector(
model,
train_dataset,
cfg,
distributed=distributed,
validate=args.validate,
logger=logger)
示例5: main
# 需要導入模塊: from mmdet import datasets [as 別名]
# 或者: from mmdet.datasets import build_dataset [as 別名]
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
# update configs according to CLI args
if args.work_dir is not None:
cfg.work_dir = args.work_dir
if args.resume_from is not None:
cfg.resume_from = args.resume_from
cfg.gpus = args.gpus
if args.autoscale_lr:
# apply the linear scaling rule (https://arxiv.org/abs/1706.02677)
cfg.optimizer['lr'] = cfg.optimizer['lr'] * cfg.gpus / 8
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# init logger before other steps
logger = get_root_logger(cfg.log_level)
logger.info('Distributed training: {}'.format(distributed))
# set random seeds
if args.seed is not None:
logger.info('Set random seed to {}'.format(args.seed))
set_random_seed(args.seed)
model = build_detector(
cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)
datasets = [build_dataset(cfg.data.train)]
if len(cfg.workflow) == 2:
datasets.append(build_dataset(cfg.data.val))
if cfg.checkpoint_config is not None:
# save mmdet version, config file content and class names in
# checkpoints as meta data
cfg.checkpoint_config.meta = dict(
mmdet_version=__version__,
config=cfg.text,
CLASSES=datasets[0].CLASSES)
# add an attribute for visualization convenience
model.CLASSES = datasets[0].CLASSES
train_detector(
model,
datasets,
cfg,
distributed=distributed,
validate=args.validate,
logger=logger)
示例6: main
# 需要導入模塊: from mmdet import datasets [as 別名]
# 或者: from mmdet.datasets import build_dataset [as 別名]
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
# update configs according to CLI args
if args.work_dir is not None:
cfg.work_dir = args.work_dir
if args.resume_from is not None:
cfg.resume_from = args.resume_from
if args.load_from is not None:
cfg.load_from = args.load_from
cfg.gpus = args.gpus
if args.autoscale_lr:
# apply the linear scaling rule (https://arxiv.org/abs/1706.02677)
cfg.optimizer['lr'] = cfg.optimizer['lr'] * cfg.gpus / 8
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# init logger before other steps
logger = get_root_logger(cfg.log_level)
logger.info('Distributed training: {}'.format(distributed))
# set random seeds
if args.seed is not None:
logger.info('Set random seed to {}'.format(args.seed))
set_random_seed(args.seed)
model = build_detector(
cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)
datasets = [build_dataset(cfg.data.train)]
if len(cfg.workflow) == 2:
datasets.append(build_dataset(cfg.data.val))
if cfg.checkpoint_config is not None:
# save mmdet version, config file content and class names in
# checkpoints as meta data
cfg.checkpoint_config.meta = dict(
mmdet_version=__version__,
config=cfg.text,
CLASSES=datasets[0].CLASSES)
# add an attribute for visualization convenience
model.CLASSES = datasets[0].CLASSES
train_detector(
model,
datasets,
cfg,
distributed=distributed,
validate=args.validate,
logger=logger)
示例7: main
# 需要導入模塊: from mmdet import datasets [as 別名]
# 或者: from mmdet.datasets import build_dataset [as 別名]
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
# update configs according to CLI args
if args.work_dir is not None:
cfg.work_dir = args.work_dir
if args.resume_from is not None:
cfg.resume_from = args.resume_from
cfg.gpus = args.gpus
if args.autoscale_lr:
# apply the linear scaling rule (https://arxiv.org/abs/1706.02677)
cfg.optimizer['lr'] = cfg.optimizer['lr'] * cfg.gpus / 8
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# init logger before other steps
logger = get_root_logger(cfg.log_level)
logger.info('Distributed training: {}'.format(distributed))
logger.info('MMDetection Version: {}'.format(__version__))
logger.info('Config: {}'.format(cfg.text))
# set random seeds
if args.seed is not None:
logger.info('Set random seed to {}'.format(args.seed))
set_random_seed(args.seed)
model = build_detector(
cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)
datasets = [build_dataset(cfg.data.train)]
if len(cfg.workflow) == 2:
datasets.append(build_dataset(cfg.data.val))
if cfg.checkpoint_config is not None:
# save mmdet version, config file content and class names in
# checkpoints as meta data
cfg.checkpoint_config.meta = dict(
mmdet_version=__version__,
config=cfg.text,
CLASSES=datasets[0].CLASSES)
# add an attribute for visualization convenience
model.CLASSES = datasets[0].CLASSES
train_detector(
model,
datasets,
cfg,
distributed=distributed,
validate=args.validate,
logger=logger)
示例8: main
# 需要導入模塊: from mmdet import datasets [as 別名]
# 或者: from mmdet.datasets import build_dataset [as 別名]
def main():
args = parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
cfg = Config.fromfile(args.config)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
# update configs according to CLI args
if args.work_dir is not None:
cfg.work_dir = args.work_dir
if args.resume_from is not None:
cfg.resume_from = args.resume_from
cfg.gpus = args.gpus
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# init logger before other steps
logger = get_root_logger(cfg.log_level)
logger.info('Distributed training: {}'.format(distributed))
# set random seeds
if args.seed is not None:
logger.info('Set random seed to {}'.format(args.seed))
set_random_seed(args.seed)
model = build_detector(
cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)
train_dataset = build_dataset(cfg.data.train)
if cfg.checkpoint_config is not None:
# save mmdet version, config file content and class names in
# checkpoints as meta data
cfg.checkpoint_config.meta = dict(
mmdet_version=__version__,
config=cfg.text,
CLASSES=train_dataset.CLASSES)
# add an attribute for visualization convenience
model.CLASSES = train_dataset.CLASSES
train_detector(
model,
train_dataset,
cfg,
distributed=distributed,
validate=args.validate,
logger=logger)
示例9: main
# 需要導入模塊: from mmdet import datasets [as 別名]
# 或者: from mmdet.datasets import build_dataset [as 別名]
def main():
args = parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
cfg = Config.fromfile(args.config)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
# update configs according to CLI args
if args.work_dir is not None:
cfg.work_dir = args.work_dir
if args.resume_from is not None:
cfg.resume_from = args.resume_from
cfg.gpus = args.gpus
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# init logger before other steps
logger = get_root_logger(cfg.log_level)
logger.info('Distributed training: {}'.format(distributed))
# set random seeds
if args.seed is not None:
logger.info('Set random seed to {}'.format(args.seed))
set_random_seed(args.seed)
model = build_detector(
cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)
train_dataset = build_dataset(cfg.data.train)
if cfg.checkpoint_config is not None:
# save mmdet version, config file content and class names in
# checkpoints as meta data
cfg.checkpoint_config.meta = dict(
mmdet_version=__version__,
config=cfg.text,
CLASSES=train_dataset.CLASSES)
# add an attribute for visualization convenience
model.CLASSES = train_dataset.CLASSES
train_detector(
model,
train_dataset,
cfg,
distributed=distributed,
validate=args.validate,
logger=logger)
示例10: main
# 需要導入模塊: from mmdet import datasets [as 別名]
# 或者: from mmdet.datasets import build_dataset [as 別名]
def main():
args = parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = "5"
cfg = Config.fromfile(args.config)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
# update configs according to CLI args
if args.work_dir is not None:
cfg.work_dir = args.work_dir
if args.resume_from is not None:
cfg.resume_from = args.resume_from
cfg.gpus = args.gpus
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# init logger before other steps
logger = get_root_logger(cfg.log_level)
logger.info('Distributed training: {}'.format(distributed))
# set random seeds
if args.seed is not None:
logger.info('Set random seed to {}'.format(args.seed))
set_random_seed(args.seed)
model = build_detector(
cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)
train_dataset = build_dataset(cfg.data.train)
if cfg.checkpoint_config is not None:
# save mmdet version, config file content and class names in
# checkpoints as meta data
cfg.checkpoint_config.meta = dict(
mmdet_version=__version__,
config=cfg.text,
CLASSES=train_dataset.CLASSES)
# add an attribute for visualization convenience
model.CLASSES = train_dataset.CLASSES
train_detector(
model,
train_dataset,
cfg,
distributed=distributed,
validate=args.validate,
logger=logger)
示例11: main
# 需要導入模塊: from mmdet import datasets [as 別名]
# 或者: from mmdet.datasets import build_dataset [as 別名]
def main():
args = parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = "6"
cfg = Config.fromfile(args.config)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
# update configs according to CLI args
if args.work_dir is not None:
cfg.work_dir = args.work_dir
if args.resume_from is not None:
cfg.resume_from = args.resume_from
cfg.gpus = args.gpus
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# init logger before other steps
logger = get_root_logger(cfg.log_level)
logger.info('Distributed training: {}'.format(distributed))
# set random seeds
if args.seed is not None:
logger.info('Set random seed to {}'.format(args.seed))
set_random_seed(args.seed)
model = build_detector(
cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)
train_dataset = build_dataset(cfg.data.train)
if cfg.checkpoint_config is not None:
# save mmdet version, config file content and class names in
# checkpoints as meta data
cfg.checkpoint_config.meta = dict(
mmdet_version=__version__,
config=cfg.text,
CLASSES=train_dataset.CLASSES)
# add an attribute for visualization convenience
model.CLASSES = train_dataset.CLASSES
train_detector(
model,
train_dataset,
cfg,
distributed=distributed,
validate=args.validate,
logger=logger)
示例12: main
# 需要導入模塊: from mmdet import datasets [as 別名]
# 或者: from mmdet.datasets import build_dataset [as 別名]
def main():
args = parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
cfg = Config.fromfile(args.config)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
# update configs according to CLI args
if args.work_dir is not None:
cfg.work_dir = args.work_dir
if args.resume_from is not None:
cfg.resume_from = args.resume_from
cfg.gpus = args.gpus
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# init logger before other steps
logger = get_root_logger(cfg.log_level)
logger.info('Distributed training: {}'.format(distributed))
# set random seeds
if args.seed is not None:
logger.info('Set random seed to {}'.format(args.seed))
set_random_seed(args.seed)
model = build_detector(
cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)
train_dataset = build_dataset(cfg.data.train)
if cfg.checkpoint_config is not None:
# save mmdet version, config file content and class names in
# checkpoints as meta data
cfg.checkpoint_config.meta = dict(
mmdet_version=__version__,
config=cfg.text,
CLASSES=train_dataset.CLASSES)
# add an attribute for visualization convenience
model.CLASSES = train_dataset.CLASSES
train_detector(
model,
train_dataset,
cfg,
distributed=distributed,
validate=args.validate,
logger=logger)
示例13: main
# 需要導入模塊: from mmdet import datasets [as 別名]
# 或者: from mmdet.datasets import build_dataset [as 別名]
def main():
args = parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
cfg = Config.fromfile(args.config)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
# update configs according to CLI args
if args.work_dir is not None:
cfg.work_dir = args.work_dir
if args.resume_from is not None:
cfg.resume_from = args.resume_from
cfg.gpus = args.gpus
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# init logger before other steps
logger = get_root_logger(cfg.log_level)
logger.info('Distributed training: {}'.format(distributed))
# set random seeds
if args.seed is not None:
logger.info('Set random seed to {}'.format(args.seed))
set_random_seed(args.seed)
model = build_detector(
cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)
train_dataset = build_dataset(cfg.data.train)
if cfg.checkpoint_config is not None:
# save mmdet version, config file content and class names in
# checkpoints as meta data
cfg.checkpoint_config.meta = dict(
mmdet_version=__version__,
config=cfg.text,
CLASSES=train_dataset.CLASSES)
# add an attribute for visualization convenience
model.CLASSES = train_dataset.CLASSES
train_detector(
model,
train_dataset,
cfg,
distributed=distributed,
validate=args.validate,
logger=logger)
示例14: main
# 需要導入模塊: from mmdet import datasets [as 別名]
# 或者: from mmdet.datasets import build_dataset [as 別名]
def main():
args = parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = "7"
cfg = Config.fromfile(args.config)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
# update configs according to CLI args
if args.work_dir is not None:
cfg.work_dir = args.work_dir
if args.resume_from is not None:
cfg.resume_from = args.resume_from
cfg.gpus = args.gpus
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# init logger before other steps
logger = get_root_logger(cfg.log_level)
logger.info('Distributed training: {}'.format(distributed))
# set random seeds
if args.seed is not None:
logger.info('Set random seed to {}'.format(args.seed))
set_random_seed(args.seed)
model = build_detector(
cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)
train_dataset = build_dataset(cfg.data.train)
if cfg.checkpoint_config is not None:
# save mmdet version, config file content and class names in
# checkpoints as meta data
cfg.checkpoint_config.meta = dict(
mmdet_version=__version__,
config=cfg.text,
CLASSES=train_dataset.CLASSES)
# add an attribute for visualization convenience
model.CLASSES = train_dataset.CLASSES
train_detector(
model,
train_dataset,
cfg,
distributed=distributed,
validate=args.validate,
logger=logger)
示例15: main
# 需要導入模塊: from mmdet import datasets [as 別名]
# 或者: from mmdet.datasets import build_dataset [as 別名]
def main():
args = parse_args()
#os.environ["CUDA_VISIBLE_DEVICES"] = "0, 1, 2, 3, 4, 5, 6, 7"
os.environ["CUDA_VISIBLE_DEVICES"] = "6, 7"
cfg = Config.fromfile(args.config)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
# update configs according to CLI args
if args.work_dir is not None:
cfg.work_dir = args.work_dir
if args.resume_from is not None:
cfg.resume_from = args.resume_from
cfg.gpus = args.gpus
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# init logger before other steps
logger = get_root_logger(cfg.log_level)
logger.info('Distributed training: {}'.format(distributed))
# set random seeds
if args.seed is not None:
logger.info('Set random seed to {}'.format(args.seed))
set_random_seed(args.seed)
model = build_detector(
cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)
train_dataset = build_dataset(cfg.data.train)
if cfg.checkpoint_config is not None:
# save mmdet version, config file content and class names in
# checkpoints as meta data
cfg.checkpoint_config.meta = dict(
mmdet_version=__version__,
config=cfg.text,
CLASSES=train_dataset.CLASSES)
# add an attribute for visualization convenience
model.CLASSES = train_dataset.CLASSES
train_detector(
model,
train_dataset,
cfg,
distributed=distributed,
validate=args.validate,
logger=logger)