當前位置: 首頁>>代碼示例>>Python>>正文


Python core.bbox_overlaps方法代碼示例

本文整理匯總了Python中mmdet.core.bbox_overlaps方法的典型用法代碼示例。如果您正苦於以下問題:Python core.bbox_overlaps方法的具體用法?Python core.bbox_overlaps怎麽用?Python core.bbox_overlaps使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mmdet.core的用法示例。


在下文中一共展示了core.bbox_overlaps方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: iou_loss

# 需要導入模塊: from mmdet import core [as 別名]
# 或者: from mmdet.core import bbox_overlaps [as 別名]
def iou_loss(pred, target, eps=1e-6):
    """IoU loss.

    Computing the IoU loss between a set of predicted bboxes and target bboxes.
    The loss is calculated as negative log of IoU.

    Args:
        pred (torch.Tensor): Predicted bboxes of format (x1, y1, x2, y2),
            shape (n, 4).
        target (torch.Tensor): Corresponding gt bboxes, shape (n, 4).
        eps (float): Eps to avoid log(0).

    Return:
        torch.Tensor: Loss tensor.
    """
    ious = bbox_overlaps(pred, target, is_aligned=True).clamp(min=eps)
    loss = -ious.log()
    return loss 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:20,代碼來源:iou_loss.py

示例2: iou_loss

# 需要導入模塊: from mmdet import core [as 別名]
# 或者: from mmdet.core import bbox_overlaps [as 別名]
def iou_loss(pred, target, eps=1e-6):
    """IoU loss.

    Computing the IoU loss between a set of predicted bboxes and target bboxes.
    The loss is calculated as negative log of IoU.

    Args:
        pred (Tensor): Predicted bboxes of format (x1, y1, x2, y2),
            shape (n, 4).
        target (Tensor): Corresponding gt bboxes, shape (n, 4).
        eps (float): Eps to avoid log(0).

    Return:
        Tensor: Loss tensor.
    """
    ious = bbox_overlaps(pred, target, is_aligned=True).clamp(min=eps)
    loss = -ious.log()
    return loss 
開發者ID:xvjiarui,項目名稱:GCNet,代碼行數:20,代碼來源:iou_loss.py

示例3: iou_loss

# 需要導入模塊: from mmdet import core [as 別名]
# 或者: from mmdet.core import bbox_overlaps [as 別名]
def iou_loss(pred, target, linear=False, eps=1e-6):
    """IoU loss.

    Computing the IoU loss between a set of predicted bboxes and target bboxes.
    The loss is calculated as negative log of IoU.

    Args:
        pred (Tensor): Predicted bboxes of format (x1, y1, x2, y2),
            shape (n, 4).
        target (Tensor): Corresponding gt bboxes, shape (n, 4).
        eps (float): Eps to avoid log(0).

    Return:
        Tensor: Loss tensor.
    """
    ious = bbox_overlaps(pred, target, is_aligned=True).clamp(min=eps)
    if linear:
        loss = 1 - ious
    else:
        loss = -ious.log()
    return loss 
開發者ID:thangvubk,項目名稱:Cascade-RPN,代碼行數:23,代碼來源:iou_loss.py

示例4: linear_iou_loss

# 需要導入模塊: from mmdet import core [as 別名]
# 或者: from mmdet.core import bbox_overlaps [as 別名]
def linear_iou_loss(pred, target, eps=1e-6):
    """IoU loss.

    Computing the IoU loss between a set of predicted bboxes and target bboxes.
    The loss is calculated as negative log of IoU.

    Args:
        pred (Tensor): Predicted bboxes of format (x1, y1, x2, y2),
            shape (n, 4).
        target (Tensor): Corresponding gt bboxes, shape (n, 4).
        eps (float): Eps to avoid log(0).

    Return:
        Tensor: Loss tensor.
    """
    ious = bbox_overlaps(pred, target, is_aligned=True).clamp(min=eps)
    loss = 1 - ious
    return loss 
開發者ID:lizhe960118,項目名稱:CenterNet,代碼行數:20,代碼來源:linear_iou_loss.py

示例5: loss_single

# 需要導入模塊: from mmdet import core [as 別名]
# 或者: from mmdet.core import bbox_overlaps [as 別名]
def loss_single(self, cls_score, bbox_pred, labels, label_weights, level,
                    bbox_targets, bbox_weights, num_total_samples, cfg):

        #generate anchors
        anchors = self.anchor_generators[level].grid_anchors(self.featmap_sizes[level], self.anchor_strides[level])
        anchors = anchors.repeat(2,1)

        # classification loss
        labels = labels.reshape(-1)
        label_weights = label_weights.reshape(-1)
        cls_score = cls_score.permute(0, 2, 3,
                                      1).reshape(-1, self.cls_out_channels)

        # regression loss
        bbox_targets = bbox_targets.reshape(-1, 4)
        bbox_weights = bbox_weights.reshape(-1, 4)
        bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4)
        if 'is_iou' in cfg.keys() and cfg['is_iou'] == True:
            #get IOU
            bbox = delta2bbox(anchors, bbox_pred, self.target_means, self.target_stds)
            ious = bbox_overlaps(bbox, bbox_targets, is_aligned=True)
            loss_cls = self.loss_cls(
                cls_score, labels, label_weights, avg_factor=num_total_samples,ious=ious)
            loss_bbox = self.loss_bbox(
                bbox_pred,
                bbox_targets,
                bbox_weights,
                avg_factor=num_total_samples)
        else:
            loss_cls = self.loss_cls(
                cls_score, labels, label_weights, avg_factor=num_total_samples)
            loss_bbox = self.loss_bbox(
                bbox_pred,
                bbox_targets,
                bbox_weights,
                avg_factor=num_total_samples)
        return loss_cls, loss_bbox 
開發者ID:xieenze,項目名稱:PolarMask,代碼行數:39,代碼來源:anchor_head.py


注:本文中的mmdet.core.bbox_overlaps方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。