本文整理匯總了Python中mmcv.runner.load_checkpoint方法的典型用法代碼示例。如果您正苦於以下問題:Python runner.load_checkpoint方法的具體用法?Python runner.load_checkpoint怎麽用?Python runner.load_checkpoint使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mmcv.runner
的用法示例。
在下文中一共展示了runner.load_checkpoint方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: init_model
# 需要導入模塊: from mmcv import runner [as 別名]
# 或者: from mmcv.runner import load_checkpoint [as 別名]
def init_model(config, checkpoint=None, device='cuda:0'):
"""
Initialize a stereo model from config file.
Args:
config (str or :obj:`mmcv.Config`): Config file path or the config
object.
checkpoint (str, optional): Checkpoint path. If left as None, the model
will not load any weights.
Returns:
nn.Module: The constructed stereo model.
"""
if isinstance(config, str):
config = mmcv.Config.fromfile(config)
elif not isinstance(config, mmcv.Config):
raise TypeError('config must be a filename or Config object, '
'but got {}'.format(type(config)))
model = build_model(config)
if checkpoint is not None:
checkpoint = load_checkpoint(model, checkpoint)
model.cfg = config # save the config in the model for convenience
model.to(device)
model.eval()
return model
示例2: init_weights
# 需要導入模塊: from mmcv import runner [as 別名]
# 或者: from mmcv.runner import load_checkpoint [as 別名]
def init_weights(self, pretrained=None):
print("init hrnet weights")
# if isinstance(pretrained, str):
# logger = logging.getLogger()
# load_checkpoint(self, pretrained, strict=False, logger=logger)
# elif pretrained is None:
# for m in self.modules():
# if isinstance(m, nn.Conv2d):
# kaiming_init(m)
# elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
# constant_init(m, 1)
# if self.zero_init_residual:
# for m in self.modules():
# if isinstance(m, Bottleneck):
# constant_init(m.norm3, 0)
# elif isinstance(m, BasicBlock):
# constant_init(m.norm2, 0)
# else:
# raise TypeError('pretrained must be a str or None')
示例3: init_detector
# 需要導入模塊: from mmcv import runner [as 別名]
# 或者: from mmcv.runner import load_checkpoint [as 別名]
def init_detector(config, checkpoint=None, device='cuda:0'):
"""Initialize a detector from config file.
Args:
config (str or :obj:`mmcv.Config`): Config file path or the config
object.
checkpoint (str, optional): Checkpoint path. If left as None, the model
will not load any weights.
Returns:
nn.Module: The constructed detector.
"""
if isinstance(config, str):
config = mmcv.Config.fromfile(config)
elif not isinstance(config, mmcv.Config):
raise TypeError('config must be a filename or Config object, '
f'but got {type(config)}')
config.model.pretrained = None
model = build_detector(config.model, test_cfg=config.test_cfg)
if checkpoint is not None:
checkpoint = load_checkpoint(model, checkpoint)
if 'CLASSES' in checkpoint['meta']:
model.CLASSES = checkpoint['meta']['CLASSES']
else:
warnings.simplefilter('once')
warnings.warn('Class names are not saved in the checkpoint\'s '
'meta data, use COCO classes by default.')
model.CLASSES = get_classes('coco')
model.cfg = config # save the config in the model for convenience
model.to(device)
model.eval()
return model
示例4: init_detector
# 需要導入模塊: from mmcv import runner [as 別名]
# 或者: from mmcv.runner import load_checkpoint [as 別名]
def init_detector(config, checkpoint=None, device='cuda:0'):
"""Initialize a detector from config file.
Args:
config (str or :obj:`mmcv.Config`): Config file path or the config
object.
checkpoint (str, optional): Checkpoint path. If left as None, the model
will not load any weights.
Returns:
nn.Module: The constructed detector.
"""
if isinstance(config, str):
config = mmcv.Config.fromfile(config)
elif not isinstance(config, mmcv.Config):
raise TypeError('config must be a filename or Config object, '
'but got {}'.format(type(config)))
config.model.pretrained = None
model = build_detector(config.model, test_cfg=config.test_cfg)
if checkpoint is not None:
checkpoint = load_checkpoint(model, checkpoint)
if 'CLASSES' in checkpoint['meta']:
model.CLASSES = checkpoint['meta']['CLASSES']
else:
warnings.warn('Class names are not saved in the checkpoint\'s '
'meta data, use COCO classes by default.')
model.CLASSES = get_classes('coco')
model.cfg = config # save the config in the model for convenience
model.to(device)
model.eval()
return model
示例5: init_detector
# 需要導入模塊: from mmcv import runner [as 別名]
# 或者: from mmcv.runner import load_checkpoint [as 別名]
def init_detector(config, checkpoint=None, device='cuda:0'):
"""Initialize a detector from config file.
Args:
config (str or :obj:`mmcv.Config`): Config file path or the config
object.
checkpoint (str, optional): Checkpoint path. If left as None, the model
will not load any weights.
Returns:
nn.Module: The constructed detector.
"""
if isinstance(config, str):
config = mmcv.Config.fromfile(config)
elif not isinstance(config, mmcv.Config):
raise TypeError('config must be a filename or Config object, '
'but got {}'.format(type(config)))
config.model.pretrained = None
model = build_detector(config.model, test_cfg=config.test_cfg)
if checkpoint is not None:
checkpoint = load_checkpoint(model, checkpoint)
if 'CLASSES' in checkpoint['meta']:
model.CLASSES = checkpoint['meta']['classes']
else:
warnings.warn('Class names are not saved in the checkpoint\'s '
'meta data, use COCO classes by default.')
model.CLASSES = get_classes('coco')
model.cfg = config # save the config in the model for convenience
model.to(device)
model.eval()
return model
示例6: load_checkpoint
# 需要導入模塊: from mmcv import runner [as 別名]
# 或者: from mmcv.runner import load_checkpoint [as 別名]
def load_checkpoint(model, filename, *args, **kwargs):
try:
filename = get_mmskeleton_url(filename)
return mmcv_load_checkpoint(model, filename, *args, **kwargs)
except (urllib.error.HTTPError, urllib.error.URLError) as e:
raise Exception(url_error_message.format(filename)) from e
示例7: load_model
# 需要導入模塊: from mmcv import runner [as 別名]
# 或者: from mmcv.runner import load_checkpoint [as 別名]
def load_model():
model = build_detector(cfg.model, test_cfg=cfg.test_cfg)
_ = load_checkpoint(model, model_cfgs[0][1]) # 7 it/s
return model
示例8: _make_stage
# 需要導入模塊: from mmcv import runner [as 別名]
# 或者: from mmcv.runner import load_checkpoint [as 別名]
def _make_stage(self, layer_config, in_channels, multiscale_output=True):
num_modules = layer_config['num_modules']
num_branches = layer_config['num_branches']
num_blocks = layer_config['num_blocks']
num_channels = layer_config['num_channels']
block = self.blocks_dict[layer_config['block']]
hr_modules = []
for i in range(num_modules):
# multi_scale_output is only used for the last module
if not multiscale_output and i == num_modules - 1:
reset_multiscale_output = False
else:
reset_multiscale_output = True
hr_modules.append(
HRModule(
num_branches,
block,
num_blocks,
in_channels,
num_channels,
reset_multiscale_output,
with_cp=self.with_cp,
norm_cfg=self.norm_cfg,
conv_cfg=self.conv_cfg))
return nn.Sequential(*hr_modules), in_channels
# def init_weights(self, pretrained=None):
# if isinstance(pretrained, str):
# logger = logging.getLogger()
# load_checkpoint(self, pretrained, strict=False, logger=logger)
# elif pretrained is None:
# for m in self.modules():
# if isinstance(m, nn.Conv2d):
# kaiming_init(m)
# elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
# constant_init(m, 1)
# if self.zero_init_residual:
# for m in self.modules():
# if isinstance(m, Bottleneck):
# constant_init(m.norm3, 0)
# elif isinstance(m, BasicBlock):
# constant_init(m.norm2, 0)
# else:
# raise TypeError('pretrained must be a str or None')