當前位置: 首頁>>代碼示例>>Python>>正文


Python mmcv.runner方法代碼示例

本文整理匯總了Python中mmcv.runner方法的典型用法代碼示例。如果您正苦於以下問題:Python mmcv.runner方法的具體用法?Python mmcv.runner怎麽用?Python mmcv.runner使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mmcv的用法示例。


在下文中一共展示了mmcv.runner方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: after_train_epoch

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import runner [as 別名]
def after_train_epoch(self, runner):
        if not self.every_n_epochs(runner, self.interval):
            return
        runner.model.eval()
        results = [None for _ in range(len(self.dataset))]
        if runner.rank == 0:
            prog_bar = mmcv.ProgressBar(len(self.dataset))
        for idx in range(runner.rank, len(self.dataset), runner.world_size):
            data = self.dataset[idx]
            data_gpu = scatter(
                collate([data], samples_per_gpu=1),
                [torch.cuda.current_device()])[0]

            # compute output
            with torch.no_grad():
                result = runner.model(
                    return_loss=False, rescale=True, **data_gpu)
            results[idx] = result

            batch_size = runner.world_size
            if runner.rank == 0:
                for _ in range(batch_size):
                    prog_bar.update()

        if runner.rank == 0:
            print('\n')
            dist.barrier()
            for i in range(1, runner.world_size):
                tmp_file = osp.join(runner.work_dir, 'temp_{}.pkl'.format(i))
                tmp_results = mmcv.load(tmp_file)
                for idx in range(i, len(results), runner.world_size):
                    results[idx] = tmp_results[idx]
                os.remove(tmp_file)
            self.evaluate(runner, results)
        else:
            tmp_file = osp.join(runner.work_dir,
                                'temp_{}.pkl'.format(runner.rank))
            mmcv.dump(results, tmp_file)
            dist.barrier()
        dist.barrier() 
開發者ID:dingjiansw101,項目名稱:AerialDetection,代碼行數:42,代碼來源:eval_hooks.py

示例2: evaluate

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import runner [as 別名]
def evaluate(self, runner, results):
        gt_bboxes = []
        gt_labels = []
        gt_ignore = [] if self.dataset.with_crowd else None
        for i in range(len(self.dataset)):
            ann = self.dataset.get_ann_info(i)
            bboxes = ann['bboxes']
            labels = ann['labels']
            if gt_ignore is not None:
                ignore = np.concatenate([
                    np.zeros(bboxes.shape[0], dtype=np.bool),
                    np.ones(ann['bboxes_ignore'].shape[0], dtype=np.bool)
                ])
                gt_ignore.append(ignore)
                bboxes = np.vstack([bboxes, ann['bboxes_ignore']])
                labels = np.concatenate([labels, ann['labels_ignore']])
            gt_bboxes.append(bboxes)
            gt_labels.append(labels)
        # If the dataset is VOC2007, then use 11 points mAP evaluation.
        if hasattr(self.dataset, 'year') and self.dataset.year == 2007:
            ds_name = 'voc07'
        else:
            ds_name = self.dataset.CLASSES
        mean_ap, eval_results = eval_map(
            results,
            gt_bboxes,
            gt_labels,
            gt_ignore=gt_ignore,
            scale_ranges=None,
            iou_thr=0.5,
            dataset=ds_name,
            print_summary=True)
        runner.log_buffer.output['mAP'] = mean_ap
        runner.log_buffer.ready = True 
開發者ID:dingjiansw101,項目名稱:AerialDetection,代碼行數:36,代碼來源:eval_hooks.py

示例3: evaluate

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import runner [as 別名]
def evaluate(self, runner, results):

        error_log_buffer = LogBuffer()
        for result in results:
            error_log_buffer.update(result['Error'])
        error_log_buffer.average()

        # import to tensor-board
        for key in error_log_buffer.output.keys():
            runner.log_buffer.output[key] = error_log_buffer.output[key]

        # for better visualization, format into pandas
        format_output_dict = flow_output_evaluation_in_pandas(error_log_buffer.output)

        runner.logger.info("Epoch [{}] Evaluation Result: \t".format(runner.epoch + 1))

        log_items = []
        for key, val in format_output_dict.items():
            if isinstance(val, pd.DataFrame):
                log_items.append("\n{}:\n{} \n".format(key, val))
            elif isinstance(val, float):
                val = "{:.4f}".format(val)
                log_items.append("{}: {}".format(key, val))
            else:
                log_items.append("{}: {}".format(key, val))

        log_str = ", ".join(log_items)
        runner.logger.info(log_str)
        runner.log_buffer.ready = True
        error_log_buffer.clear() 
開發者ID:DeepMotionAIResearch,項目名稱:DenseMatchingBenchmark,代碼行數:32,代碼來源:eval_hooks.py

示例4: evaluate

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import runner [as 別名]
def evaluate(self, runner, results):
        self.eval_conf(runner, results, bins_number=100)

        error_log_buffer = LogBuffer()
        for result in results:
            error_log_buffer.update(result['Error'])
        error_log_buffer.average()

        # import to tensor-board
        for key in error_log_buffer.output.keys():
            runner.log_buffer.output[key] = error_log_buffer.output[key]

        # for better visualization, format into pandas
        format_output_dict = disp_output_evaluation_in_pandas(error_log_buffer.output)

        runner.logger.info("Epoch [{}] Evaluation Result: \t".format(runner.epoch + 1))

        log_items = []
        for key, val in format_output_dict.items():
            if isinstance(val, pd.DataFrame):
                log_items.append("\n{}:\n{} \n".format(key, val))
            elif isinstance(val, float):
                val = "{:.4f}".format(val)
                log_items.append("{}: {}".format(key, val))
            else:
                log_items.append("{}: {}".format(key, val))

        log_str = ", ".join(log_items)
        runner.logger.info(log_str)
        runner.log_buffer.ready = True
        error_log_buffer.clear()

    # confidence distribution statistics 
開發者ID:DeepMotionAIResearch,項目名稱:DenseMatchingBenchmark,代碼行數:35,代碼來源:eval_hooks.py

示例5: eval_conf

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import runner [as 別名]
def eval_conf(self, runner, results, bins_number=100):
        # results is a list, corresponds to each test sample,
        # for each sample, the result are saved as dict
        # if the first sample contains the keyword 'Confidence'
        if 'Confidence' not in results[0]:
            return

        # each sample has several confidence map, i.e. bin_edges is a list,
        # with length = confidence map number
        conf_number = len(results[0]['Confidence']['bin_edges'])

        # for each confidence map, statistic its confidence distribution among all samples
        total_counts = np.zeros((conf_number, bins_number))
        total_bin_edges = np.zeros((conf_number, bins_number + 1))
        for result in results:
            # enumerate each sample's every confidence map, and i is the index of confidence map
            for i, conf in enumerate(result['Confidence']['bin_edges']):
                counts, bin_edges = result['Confidence']['counts'][i], result['Confidence']['bin_edges'][i]
                # accumulate each confidence map's counts for all samples
                total_counts[i] = total_counts[i] + counts
                # each confidence map's bin_edges are same
                total_bin_edges[i] = bin_edges

        for i in range(conf_number):
            total_counts[i] = total_counts[i] / sum(total_counts[i])
            name = "figure/confidence_histogram/{}".format(i)
            conf_hist = self.conf_tool.hist2vis(total_counts[i], total_bin_edges[i])
            runner.log_buffer.output[name] = conf_hist

        runner.logger.info("Epoch [{}] Confidence evaluation done!".format(runner.epoch + 1))
        runner.log_buffer.ready = True 
開發者ID:DeepMotionAIResearch,項目名稱:DenseMatchingBenchmark,代碼行數:33,代碼來源:eval_hooks.py

示例6: before_run

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import runner [as 別名]
def before_run(self, runner):
        super(TextLoggerHook, self).before_run(runner)
        self.start_iter = runner.iter
        self.json_log_path = osp.join(runner.work_dir,
                                      '{}.log.json'.format(runner.timestamp)) 
開發者ID:DeepMotionAIResearch,項目名稱:DenseMatchingBenchmark,代碼行數:7,代碼來源:text_logger.py

示例7: _get_max_memory

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import runner [as 別名]
def _get_max_memory(self, runner):
        mem = torch.cuda.max_memory_allocated()
        mem_mb = torch.tensor([mem / (1024 * 1024)],
                              dtype=torch.int,
                              device=torch.device('cuda'))
        if runner.world_size > 1:
            dist.reduce(mem_mb, 0, op=dist.ReduceOp.MAX)
        return mem_mb.item() 
開發者ID:DeepMotionAIResearch,項目名稱:DenseMatchingBenchmark,代碼行數:10,代碼來源:text_logger.py

示例8: _dump_log

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import runner [as 別名]
def _dump_log(self, log_dict, runner):
        # dump log in json format
        json_log = OrderedDict()
        for k, v in log_dict.items():
            json_log[k] = self._round_float(v)
        # only append log at last line
        if runner.rank == 0:
            with open(self.json_log_path, 'a+') as f:
                mmcv.dump(json_log, f, file_format='json')
                f.write('\n') 
開發者ID:DeepMotionAIResearch,項目名稱:DenseMatchingBenchmark,代碼行數:12,代碼來源:text_logger.py

示例9: log

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import runner [as 別名]
def log(self, runner):
        log_dict = OrderedDict()
        # training mode if the output contains the key "time"
        mode = 'train' if 'time' in runner.log_buffer.output else 'val'
        log_dict['mode'] = mode
        log_dict['epoch'] = runner.epoch + 1
        log_dict['iter'] = runner.inner_iter + 1
        # only record lr of the first param group
        log_dict['lr'] = runner.current_lr()[0]
        if mode == 'train':
            log_dict['time'] = runner.log_buffer.output['time']
            log_dict['data_time'] = runner.log_buffer.output['data_time']
            # statistic memory
            if torch.cuda.is_available():
                log_dict['memory'] = self._get_max_memory(runner)
        for name, val in runner.log_buffer.output.items():
            if name in ['time', 'data_time']:
                continue

            if not self._checkout(val):
                continue

            log_dict[name] = val

        self._log_info(log_dict, runner)
        self._dump_log(log_dict, runner) 
開發者ID:DeepMotionAIResearch,項目名稱:DenseMatchingBenchmark,代碼行數:28,代碼來源:text_logger.py

示例10: visualize

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import runner [as 別名]
def visualize(self, runner, results):
        raise NotImplementedError 
開發者ID:DeepMotionAIResearch,項目名稱:DenseMatchingBenchmark,代碼行數:4,代碼來源:vis_hooks.py


注:本文中的mmcv.runner方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。