當前位置: 首頁>>代碼示例>>Python>>正文


Python runner.get_dist_info方法代碼示例

本文整理匯總了Python中mmcv.runner.get_dist_info方法的典型用法代碼示例。如果您正苦於以下問題:Python runner.get_dist_info方法的具體用法?Python runner.get_dist_info怎麽用?Python runner.get_dist_info使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mmcv.runner的用法示例。


在下文中一共展示了runner.get_dist_info方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: multi_gpu_test

# 需要導入模塊: from mmcv import runner [as 別名]
# 或者: from mmcv.runner import get_dist_info [as 別名]
def multi_gpu_test(model, data_loader, tmpdir=None):
    model.eval()
    results = []
    dataset = data_loader.dataset
    rank, world_size = get_dist_info()
    if rank == 0:
        prog_bar = mmcv.ProgressBar(len(dataset))
    for i, data in enumerate(data_loader):
        with torch.no_grad():
            result = model(return_loss=False, rescale=True, **data)
        results.append(result)

        if rank == 0:
            batch_size = data['img'][0].size(0)
            for _ in range(batch_size * world_size):
                prog_bar.update()

    # collect results from all ranks
    results = collect_results(results, len(dataset), tmpdir)

    return results 
開發者ID:dingjiansw101,項目名稱:AerialDetection,代碼行數:23,代碼來源:test_robustness.py

示例2: get_root_logger

# 需要導入模塊: from mmcv import runner [as 別名]
# 或者: from mmcv.runner import get_dist_info [as 別名]
def get_root_logger(save_dir, log_level=logging.INFO, filename="log.txt"):
    logger = logging.getLogger()
    if not logger.hasHandlers():
        logging.basicConfig(
            format='%(asctime)s - %(levelname)s - %(message)s',
            level=log_level)
    rank, _ = get_dist_info()
    if rank != 0:
        logger.setLevel('ERROR')
    if save_dir:
        fh = logging.FileHandler(os.path.join(save_dir, filename))
        fh.setLevel(log_level)
        formatter = logging.Formatter("%(asctime)s - %(levelname)s: %(message)s")
        fh.setFormatter(formatter)
        logger.addHandler(fh)
        if rank != 0:
            fh.setLevel('ERROR')

    return logger 
開發者ID:DeepMotionAIResearch,項目名稱:DenseMatchingBenchmark,代碼行數:21,代碼來源:env.py

示例3: collect_results_cpu

# 需要導入模塊: from mmcv import runner [as 別名]
# 或者: from mmcv.runner import get_dist_info [as 別名]
def collect_results_cpu(result_part, size, tmpdir=None):
    rank, world_size = get_dist_info()
    # create a tmp dir if it is not specified
    if tmpdir is None:
        MAX_LEN = 512
        # 32 is whitespace
        dir_tensor = torch.full((MAX_LEN, ),
                                32,
                                dtype=torch.uint8,
                                device='cuda')
        if rank == 0:
            tmpdir = tempfile.mkdtemp()
            tmpdir = torch.tensor(
                bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda')
            dir_tensor[:len(tmpdir)] = tmpdir
        dist.broadcast(dir_tensor, 0)
        tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip()
    else:
        mmcv.mkdir_or_exist(tmpdir)
    # dump the part result to the dir
    mmcv.dump(result_part, osp.join(tmpdir, f'part_{rank}.pkl'))
    dist.barrier()
    # collect all parts
    if rank != 0:
        return None
    else:
        # load results of all parts from tmp dir
        part_list = []
        for i in range(world_size):
            part_file = osp.join(tmpdir, f'part_{i}.pkl')
            part_list.append(mmcv.load(part_file))
        # sort the results
        ordered_results = []
        for res in zip(*part_list):
            ordered_results.extend(list(res))
        # the dataloader may pad some samples
        ordered_results = ordered_results[:size]
        # remove tmp dir
        shutil.rmtree(tmpdir)
        return ordered_results 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:42,代碼來源:test.py

示例4: collect_results_gpu

# 需要導入模塊: from mmcv import runner [as 別名]
# 或者: from mmcv.runner import get_dist_info [as 別名]
def collect_results_gpu(result_part, size):
    rank, world_size = get_dist_info()
    # dump result part to tensor with pickle
    part_tensor = torch.tensor(
        bytearray(pickle.dumps(result_part)), dtype=torch.uint8, device='cuda')
    # gather all result part tensor shape
    shape_tensor = torch.tensor(part_tensor.shape, device='cuda')
    shape_list = [shape_tensor.clone() for _ in range(world_size)]
    dist.all_gather(shape_list, shape_tensor)
    # padding result part tensor to max length
    shape_max = torch.tensor(shape_list).max()
    part_send = torch.zeros(shape_max, dtype=torch.uint8, device='cuda')
    part_send[:shape_tensor[0]] = part_tensor
    part_recv_list = [
        part_tensor.new_zeros(shape_max) for _ in range(world_size)
    ]
    # gather all result part
    dist.all_gather(part_recv_list, part_send)

    if rank == 0:
        part_list = []
        for recv, shape in zip(part_recv_list, shape_list):
            part_list.append(
                pickle.loads(recv[:shape[0]].cpu().numpy().tobytes()))
        # sort the results
        ordered_results = []
        for res in zip(*part_list):
            ordered_results.extend(list(res))
        # the dataloader may pad some samples
        ordered_results = ordered_results[:size]
        return ordered_results 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:33,代碼來源:test.py

示例5: __init__

# 需要導入模塊: from mmcv import runner [as 別名]
# 或者: from mmcv.runner import get_dist_info [as 別名]
def __init__(self,
                 dataset,
                 samples_per_gpu=1,
                 num_replicas=None,
                 rank=None):
        _rank, _num_replicas = get_dist_info()
        if num_replicas is None:
            num_replicas = _num_replicas
        if rank is None:
            rank = _rank
        self.dataset = dataset
        self.samples_per_gpu = samples_per_gpu
        self.num_replicas = num_replicas
        self.rank = rank
        self.epoch = 0

        assert hasattr(self.dataset, 'flag')
        self.flag = self.dataset.flag
        self.group_sizes = np.bincount(self.flag)

        self.num_samples = 0
        for i, j in enumerate(self.group_sizes):
            self.num_samples += int(
                math.ceil(self.group_sizes[i] * 1.0 / self.samples_per_gpu /
                          self.num_replicas)) * self.samples_per_gpu
        self.total_size = self.num_samples * self.num_replicas 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:28,代碼來源:group_sampler.py

示例6: collect_results

# 需要導入模塊: from mmcv import runner [as 別名]
# 或者: from mmcv.runner import get_dist_info [as 別名]
def collect_results(result_part, size, tmpdir=None):
    rank, world_size = get_dist_info()
    # create a tmp dir if it is not specified
    if tmpdir is None:
        MAX_LEN = 512
        # 32 is whitespace
        dir_tensor = torch.full((MAX_LEN, ),
                                32,
                                dtype=torch.uint8,
                                device='cuda')
        if rank == 0:
            tmpdir = tempfile.mkdtemp()
            tmpdir = torch.tensor(
                bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda')
            dir_tensor[:len(tmpdir)] = tmpdir
        dist.broadcast(dir_tensor, 0)
        tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip()
    else:
        mmcv.mkdir_or_exist(tmpdir)
    # dump the part result to the dir
    mmcv.dump(result_part, osp.join(tmpdir, f'part_{rank}.pkl'))
    dist.barrier()
    # collect all parts
    if rank != 0:
        return None
    else:
        # load results of all parts from tmp dir
        part_list = []
        for i in range(world_size):
            part_file = osp.join(tmpdir, f'part_{i}.pkl')
            part_list.append(mmcv.load(part_file))
        # sort the results
        ordered_results = []
        for res in zip(*part_list):
            ordered_results.extend(list(res))
        # the dataloader may pad some samples
        ordered_results = ordered_results[:size]
        # remove tmp dir
        shutil.rmtree(tmpdir)
        return ordered_results 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:42,代碼來源:test_robustness.py

示例7: get_root_logger

# 需要導入模塊: from mmcv import runner [as 別名]
# 或者: from mmcv.runner import get_dist_info [as 別名]
def get_root_logger(log_level=logging.INFO):
    logger = logging.getLogger()
    if not logger.hasHandlers():
        logging.basicConfig(
            format='%(asctime)s - %(levelname)s - %(message)s',
            level=log_level)
    rank, _ = get_dist_info()
    if rank != 0:
        logger.setLevel('ERROR')
    return logger 
開發者ID:dingjiansw101,項目名稱:AerialDetection,代碼行數:12,代碼來源:env.py

示例8: build_dataloader

# 需要導入模塊: from mmcv import runner [as 別名]
# 或者: from mmcv.runner import get_dist_info [as 別名]
def build_dataloader(dataset,
                     imgs_per_gpu,
                     workers_per_gpu,
                     num_gpus=1,
                     dist=True,
                     **kwargs):
    shuffle = kwargs.get('shuffle', True)
    if dist:
        rank, world_size = get_dist_info()
        if shuffle:
            sampler = DistributedGroupSampler(dataset, imgs_per_gpu,
                                              world_size, rank)
        else:
            sampler = DistributedSampler(
                dataset, world_size, rank, shuffle=False)
        batch_size = imgs_per_gpu
        num_workers = workers_per_gpu
    else:
        sampler = GroupSampler(dataset, imgs_per_gpu) if shuffle else None
        batch_size = num_gpus * imgs_per_gpu
        num_workers = num_gpus * workers_per_gpu

    data_loader = DataLoader(
        dataset,
        batch_size=batch_size,
        sampler=sampler,
        num_workers=num_workers,
        collate_fn=partial(collate, samples_per_gpu=imgs_per_gpu),
        pin_memory=False,
        **kwargs)

    return data_loader 
開發者ID:dingjiansw101,項目名稱:AerialDetection,代碼行數:34,代碼來源:build_loader.py

示例9: collect_results

# 需要導入模塊: from mmcv import runner [as 別名]
# 或者: from mmcv.runner import get_dist_info [as 別名]
def collect_results(result_part, size, tmpdir=None):
    rank, world_size = get_dist_info()
    # create a tmp dir if it is not specified
    if tmpdir is None:
        MAX_LEN = 512
        # 32 is whitespace
        dir_tensor = torch.full((MAX_LEN, ),
                                32,
                                dtype=torch.uint8,
                                device='cuda')
        if rank == 0:
            tmpdir = tempfile.mkdtemp()
            tmpdir = torch.tensor(
                bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda')
            dir_tensor[:len(tmpdir)] = tmpdir
        dist.broadcast(dir_tensor, 0)
        tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip()
    else:
        mmcv.mkdir_or_exist(tmpdir)
    # dump the part result to the dir
    mmcv.dump(result_part, osp.join(tmpdir, 'part_{}.pkl'.format(rank)))
    dist.barrier()
    # collect all parts
    if rank != 0:
        return None
    else:
        # load results of all parts from tmp dir
        part_list = []
        for i in range(world_size):
            part_file = osp.join(tmpdir, 'part_{}.pkl'.format(i))
            part_list.append(mmcv.load(part_file))
        # sort the results
        ordered_results = []
        for res in zip(*part_list):
            ordered_results.extend(list(res))
        # the dataloader may pad some samples
        ordered_results = ordered_results[:size]
        # remove tmp dir
        shutil.rmtree(tmpdir)
        return ordered_results 
開發者ID:dingjiansw101,項目名稱:AerialDetection,代碼行數:42,代碼來源:test_robustness.py

示例10: build_data_loader

# 需要導入模塊: from mmcv import runner [as 別名]
# 或者: from mmcv.runner import get_dist_info [as 別名]
def build_data_loader(
        dataset,
        imgs_per_gpu,
        workers_per_gpu,
        num_gpus=1,
        dist=True,
        **kwargs
):
    shuffle = kwargs.get('shuffle', True)
    if dist:
        rank, world_size = get_dist_info()
        if shuffle:
            sampler = DistributedGroupSampler(
                dataset, imgs_per_gpu, world_size, rank
            )
        else:
            sampler = DistributedSampler(
                dataset, world_size, rank, shuffle=False
            )
        batch_size = imgs_per_gpu
        num_workers = workers_per_gpu
    else:
        sampler = GroupSampler(dataset, imgs_per_gpu) if shuffle else None
        batch_size = num_gpus * imgs_per_gpu
        num_workers = num_gpus * workers_per_gpu

    data_loader = DataLoader(
        dataset,
        batch_size=batch_size,
        sampler=sampler,
        num_workers=num_workers,
        collate_fn=partial(collate, samples_per_gpu=imgs_per_gpu),
        pin_memory=False,
        **kwargs)

    return data_loader 
開發者ID:DeepMotionAIResearch,項目名稱:DenseMatchingBenchmark,代碼行數:38,代碼來源:builder.py


注:本文中的mmcv.runner.get_dist_info方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。