本文整理匯總了Python中mmcv.parallel.MMDataParallel方法的典型用法代碼示例。如果您正苦於以下問題:Python parallel.MMDataParallel方法的具體用法?Python parallel.MMDataParallel怎麽用?Python parallel.MMDataParallel使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mmcv.parallel
的用法示例。
在下文中一共展示了parallel.MMDataParallel方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _non_dist_train
# 需要導入模塊: from mmcv import parallel [as 別名]
# 或者: from mmcv.parallel import MMDataParallel [as 別名]
def _non_dist_train(model, dataset, cfg, validate=False):
# prepare data loaders
data_loaders = [
build_dataloader(
dataset,
cfg.data.imgs_per_gpu,
cfg.data.workers_per_gpu,
cfg.gpus,
dist=False)
]
# put model on gpus
model = MMDataParallel(model, device_ids=range(cfg.gpus)).cuda()
# build runner
optimizer = build_optimizer(model, cfg.optimizer)
runner = Runner(model, batch_processor, optimizer, cfg.work_dir,
cfg.log_level)
runner.register_training_hooks(cfg.lr_config, cfg.optimizer_config,
cfg.checkpoint_config, cfg.log_config)
if cfg.resume_from:
runner.resume(cfg.resume_from)
elif cfg.load_from:
runner.load_checkpoint(cfg.load_from)
runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
示例2: _non_dist_test
# 需要導入模塊: from mmcv import parallel [as 別名]
# 或者: from mmcv.parallel import MMDataParallel [as 別名]
def _non_dist_test(model, dataset, cfg, validate=False):
model = MMDataParallel(model, device_ids=cfg.gpus.test).cuda()
model.eval()
embeds = _process_embeds(dataset, model, cfg)
metric = model.module.triplet_net.metric_branch
# compatibility auc
auc = dataset.test_compatibility(embeds, metric)
# fill-in-blank accuracy
acc = dataset.test_fitb(embeds, metric)
print('Compat AUC: {:.2f} FITB: {:.1f}\n'.format(
round(auc, 2), round(acc * 100, 1)))
示例3: test_runner_with_parallel
# 需要導入模塊: from mmcv import parallel [as 別名]
# 或者: from mmcv.parallel import MMDataParallel [as 別名]
def test_runner_with_parallel():
def batch_processor():
pass
model = MMDataParallel(OldStyleModel())
_ = EpochBasedRunner(model, batch_processor, logger=logging.getLogger())
model = MMDataParallel(Model())
_ = EpochBasedRunner(model, logger=logging.getLogger())
with pytest.raises(RuntimeError):
# batch_processor and train_step() cannot be both set
def batch_processor():
pass
model = MMDataParallel(Model())
_ = EpochBasedRunner(
model, batch_processor, logger=logging.getLogger())
示例4: _non_dist_train
# 需要導入模塊: from mmcv import parallel [as 別名]
# 或者: from mmcv.parallel import MMDataParallel [as 別名]
def _non_dist_train(model, dataset, cfg, validate=False):
# prepare data loaders
data_loaders = [
build_dataloader(
dataset,
cfg.data.imgs_per_gpu,
cfg.data.workers_per_gpu,
cfg.gpus,
dist=False)
]
# put model on gpus
model = MMDataParallel(model, device_ids=range(cfg.gpus)).cuda()
# build runner
runner = Runner(model, batch_processor, cfg.optimizer, cfg.work_dir,
cfg.log_level)
runner.register_training_hooks(cfg.lr_config, cfg.optimizer_config,
cfg.checkpoint_config, cfg.log_config)
if cfg.resume_from:
runner.resume(cfg.resume_from)
elif cfg.load_from:
runner.load_checkpoint(cfg.load_from)
runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
示例5: _non_dist_train
# 需要導入模塊: from mmcv import parallel [as 別名]
# 或者: from mmcv.parallel import MMDataParallel [as 別名]
def _non_dist_train(model, datasets, cfg, validate=False, logger=None):
# prepare data loaders
data_loaders = [
build_dataloader(
dataset,
cfg.data.imgs_per_gpu,
cfg.data.workers_per_gpu,
cfg.gpus,
dist=False) for dataset in datasets
]
# put model on gpus
model = MMDataParallel(model, device_ids=range(cfg.gpus)).cuda()
# build runner
runner = NASRunner(model, batch_processor, None, cfg.work_dir, cfg.log_level, cfg=cfg, logger=logger)
runner.register_training_hooks(cfg.lr_config, cfg.optimizer.weight_optim.optimizer_config,
cfg.optimizer.arch_optim.optimizer_config,
cfg.checkpoint_config, cfg.log_config)
if cfg.resume_from:
runner.resume(cfg.resume_from)
elif cfg.load_from:
runner.load_checkpoint(cfg.load_from)
runner.run(data_loaders, cfg.workflow, cfg.total_epochs, cfg.arch_update_epoch)
示例6: _non_dist_train
# 需要導入模塊: from mmcv import parallel [as 別名]
# 或者: from mmcv.parallel import MMDataParallel [as 別名]
def _non_dist_train(model, dataset, cfg, validate=False):
# prepare data loaders
data_loaders = [
build_dataloader(
dataset,
cfg.data.videos_per_gpu,
cfg.data.workers_per_gpu,
cfg.gpus,
dist=False)
]
# put model on gpus
model = MMDataParallel(model, device_ids=range(cfg.gpus)).cuda()
# build runner
runner = Runner(model, batch_processor, cfg.optimizer, cfg.work_dir,
cfg.log_level)
runner.register_training_hooks(cfg.lr_config, cfg.optimizer_config,
cfg.checkpoint_config, cfg.log_config)
if cfg.resume_from:
runner.resume(cfg.resume_from)
elif cfg.load_from:
runner.load_checkpoint(cfg.load_from)
runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
示例7: _single_train
# 需要導入模塊: from mmcv import parallel [as 別名]
# 或者: from mmcv.parallel import MMDataParallel [as 別名]
def _single_train(model, data_loaders, cfg):
if cfg.gpus > 1:
raise NotImplemented
# put model on gpus
model = MMDataParallel(model, device_ids=range(cfg.gpus)).cuda()
# build runner
optimizer = build_optimizer(model, cfg.optimizer)
runner = Runner(model, batch_processor, optimizer, cfg.work_dir,
cfg.log_level)
runner.register_training_hooks(cfg.lr_config, cfg.optimizer_config,
cfg.checkpoint_config, cfg.log_config)
if cfg.resume_from:
runner.resume(cfg.resume_from)
elif cfg.load_from:
runner.load_checkpoint(cfg.load_from)
runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
示例8: _single_train
# 需要導入模塊: from mmcv import parallel [as 別名]
# 或者: from mmcv.parallel import MMDataParallel [as 別名]
def _single_train(model, data_loaders, cfg):
if cfg.gpus > 1:
raise NotImplemented
# put model on gpus
model = MMDataParallel(model, device_ids=range(cfg.gpus)).cuda()
# build runner
optimizer = build_optimizer(model, cfg.optimizer)
runner = Runner(model,
batch_processor,
optimizer,
cfg.work_dir,
cfg.log_level,
iter_size=cfg.iter_size)
runner.register_training_hooks(cfg.lr_config, cfg.optimizer_config,
cfg.checkpoint_config, cfg.log_config)
if cfg.resume_from:
runner.resume(cfg.resume_from)
elif cfg.load_from:
runner.load_checkpoint(cfg.load_from)
runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
示例9: _single_train
# 需要導入模塊: from mmcv import parallel [as 別名]
# 或者: from mmcv.parallel import MMDataParallel [as 別名]
def _single_train(model, data_loaders, batch_processor, cfg):
if cfg.gpus > 1:
raise NotImplemented
# put model on gpus
model = MMDataParallel(model, device_ids=range(cfg.gpus)).cuda()
# build runner
optimizer = build_optimizer(model, cfg.optimizer)
runner = Runner(model,
batch_processor,
optimizer,
cfg.work_dir,
cfg.log_level,
iter_size=cfg.iter_size)
runner.register_training_hooks(cfg.lr_config, cfg.optimizer_config,
cfg.checkpoint_config, cfg.log_config)
if cfg.resume_from:
runner.resume(cfg.resume_from)
elif cfg.load_from:
runner.load_checkpoint(cfg.load_from)
runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
示例10: _non_dist_train
# 需要導入模塊: from mmcv import parallel [as 別名]
# 或者: from mmcv.parallel import MMDataParallel [as 別名]
def _non_dist_train(
model, train_dataset, cfg,
eval_dataset=None, vis_dataset=None, validate=False, logger=None
):
# prepare data loaders
data_loaders = [
build_data_loader(
train_dataset,
cfg.data.imgs_per_gpu,
cfg.data.workers_per_gpu,
cfg.gpus,
dist=False)
]
# put model on gpus
model = MMDataParallel(model, device_ids=range(cfg.gpus)).cuda()
# build runner
optimizer = build_optimizer(model, cfg.optimizer)
runner = Runner(
model, batch_processor, optimizer, cfg.work_dir, cfg.log_level, logger
)
logger.info("Register Optimizer Hook...")
runner.register_training_hooks(
cfg.lr_config, cfg.optimizer_config, cfg.checkpoint_config, cfg.log_config
)
logger.info("Register EmptyCache Hook...")
runner.register_hook(
EmptyCacheHook(before_epoch=True, after_iter=False, after_epoch=True),
priority='VERY_LOW'
)
if cfg.resume_from:
runner.resume(cfg.resume_from)
elif cfg.load_from:
runner.load_checkpoint(cfg.load_from)
runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
示例11: _non_dist_train
# 需要導入模塊: from mmcv import parallel [as 別名]
# 或者: from mmcv.parallel import MMDataParallel [as 別名]
def _non_dist_train(model, dataset, cfg, validate=False):
# prepare data loaders
data_loaders = [
build_dataloader(
dataset,
cfg.data.imgs_per_gpu,
cfg.data.workers_per_gpu,
cfg.gpus,
dist=False)
]
# put model on gpus
model = MMDataParallel(model, device_ids=range(cfg.gpus)).cuda()
# build runner
optimizer = build_optimizer(model, cfg.optimizer)
runner = Runner(model, batch_processor, optimizer, cfg.work_dir,
cfg.log_level)
# fp16 setting
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
optimizer_config = Fp16OptimizerHook(
**cfg.optimizer_config, **fp16_cfg, distributed=False)
else:
optimizer_config = cfg.optimizer_config
runner.register_training_hooks(cfg.lr_config, optimizer_config,
cfg.checkpoint_config, cfg.log_config)
if cfg.resume_from:
runner.resume(cfg.resume_from)
elif cfg.load_from:
runner.load_checkpoint(cfg.load_from)
runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
示例12: _non_dist_train
# 需要導入模塊: from mmcv import parallel [as 別名]
# 或者: from mmcv.parallel import MMDataParallel [as 別名]
def _non_dist_train(model, dataset, cfg, validate=False):
# prepare data loaders
# 返回dataloader的迭代器,采用pytorch的DataLoader方法封裝數據集
data_loaders = [
build_dataloader(
dataset,
cfg.data.imgs_per_gpu,
cfg.data.workers_per_gpu,
cfg.gpus,
dist=False)
]
# put model on gpus 這裏多GPU輸入沒用list而是迭代器,注意單GPU是range(0,1),遍曆的時候隻有0
model = MMDataParallel(model, device_ids=range(cfg.gpus)).cuda()
# build runner
optimizer = build_optimizer(model, cfg.optimizer)
runner = Runner(model, batch_processor, optimizer, cfg.work_dir,
cfg.log_level)
# fp16 setting
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
optimizer_config = Fp16OptimizerHook(
**cfg.optimizer_config, **fp16_cfg, distributed=False)
else:
optimizer_config = cfg.optimizer_config
# 注冊鉤子
runner.register_training_hooks(cfg.lr_config, optimizer_config,
cfg.checkpoint_config, cfg.log_config)
# 斷點加載或文件加載數據
if cfg.resume_from:
runner.resume(cfg.resume_from)
elif cfg.load_from:
runner.load_checkpoint(cfg.load_from)
runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
示例13: _non_dist_test
# 需要導入模塊: from mmcv import parallel [as 別名]
# 或者: from mmcv.parallel import MMDataParallel [as 別名]
def _non_dist_test(model, query_set, gallery_set, cfg, validate=False):
model = MMDataParallel(model, device_ids=cfg.gpus.test).cuda()
model.eval()
query_embeds = _process_embeds(query_set, model, cfg)
gallery_embeds = _process_embeds(gallery_set, model, cfg)
query_embeds_np = np.array(query_embeds)
gallery_embeds_np = np.array(gallery_embeds)
e = Evaluator(
cfg.data.query.id_file,
cfg.data.gallery.id_file,
extract_feature=cfg.extract_feature)
e.evaluate(query_embeds_np, gallery_embeds_np)
示例14: _non_dist_train
# 需要導入模塊: from mmcv import parallel [as 別名]
# 或者: from mmcv.parallel import MMDataParallel [as 別名]
def _non_dist_train(model, dataset, cfg, validate=False):
# prepare data loaders
data_loaders = [
build_dataloader(
dataset,
cfg.data.imgs_per_gpu,
cfg.data.workers_per_gpu,
len(cfg.gpus.train),
dist=False)
]
print('dataloader built')
model = MMDataParallel(model, device_ids=cfg.gpus.train).cuda()
print('model paralleled')
optimizer = build_optimizer(model, cfg.optimizer)
runner = Runner(model, batch_processor, optimizer, cfg.work_dir,
cfg.log_level)
runner.register_training_hooks(cfg.lr_config, cfg.optimizer_config,
cfg.checkpoint_config, cfg.log_config)
if cfg.resume_from:
runner.resume(cfg.resume_from)
elif cfg.load_from:
runner.load_checkpoint(cfg.load_from)
runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
示例15: _non_dist_train
# 需要導入模塊: from mmcv import parallel [as 別名]
# 或者: from mmcv.parallel import MMDataParallel [as 別名]
def _non_dist_train(model, dataset, cfg, validate=False):
# prepare data loaders
data_loaders = [
build_dataloader(
dataset,
cfg.data.imgs_per_gpu,
cfg.data.workers_per_gpu,
len(cfg.gpus.train),
dist=False)
]
print('dataloader built')
# put model on gpus
model = MMDataParallel(model, device_ids=cfg.gpus.train).cuda()
print('model paralleled')
optimizer = build_optimizer(model, cfg.optimizer)
runner = Runner(model, batch_processor, optimizer, cfg.work_dir,
cfg.log_level)
runner.register_training_hooks(cfg.lr_config, cfg.optimizer_config,
cfg.checkpoint_config, cfg.log_config)
if cfg.resume_from:
runner.resume(cfg.resume_from)
elif cfg.load_from:
runner.load_checkpoint(cfg.load_from)
runner.run(data_loaders, cfg.workflow, cfg.total_epochs)