當前位置: 首頁>>代碼示例>>Python>>正文


Python mmcv.imshow_det_bboxes方法代碼示例

本文整理匯總了Python中mmcv.imshow_det_bboxes方法的典型用法代碼示例。如果您正苦於以下問題:Python mmcv.imshow_det_bboxes方法的具體用法?Python mmcv.imshow_det_bboxes怎麽用?Python mmcv.imshow_det_bboxes使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mmcv的用法示例。


在下文中一共展示了mmcv.imshow_det_bboxes方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import imshow_det_bboxes [as 別名]
def main():
    args = parse_args()
    cfg = retrieve_data_cfg(args.config, args.skip_type)

    dataset = build_dataset(cfg.data.train)

    progress_bar = mmcv.ProgressBar(len(dataset))
    for item in dataset:
        filename = os.path.join(args.output_dir,
                                Path(item['filename']).name
                                ) if args.output_dir is not None else None
        mmcv.imshow_det_bboxes(
            item['img'],
            item['gt_bboxes'],
            item['gt_labels'] - 1,
            class_names=dataset.CLASSES,
            show=not args.not_show,
            out_file=filename,
            wait_time=args.show_interval)
        progress_bar.update() 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:22,代碼來源:browse_dataset.py

示例2: render

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import imshow_det_bboxes [as 別名]
def render(image, pred, person_bbox, bbox_thre=0):
    if pred is None:
        return image

    mmcv.imshow_det_bboxes(image,
                           person_bbox,
                           np.zeros(len(person_bbox)).astype(int),
                           class_names=['person'],
                           score_thr=bbox_thre,
                           show=False,
                           wait_time=0)

    for person_pred in pred:
        for joint_pred in person_pred:
            cv2.circle(image, (int(joint_pred[0]), int(joint_pred[1])), 2,
                       [255, 0, 0], 2)

    return np.uint8(image) 
開發者ID:open-mmlab,項目名稱:mmskeleton,代碼行數:20,代碼來源:pose_demo.py

示例3: show_result

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import imshow_det_bboxes [as 別名]
def show_result(img, result, class_names, score_thr=0.3, out_file=None):
    """Visualize the detection results on the image.

    Args:
        img (str or np.ndarray): Image filename or loaded image.
        result (tuple[list] or list): The detection result, can be either
            (bbox, segm) or just bbox.
        class_names (list[str] or tuple[str]): A list of class names.
        score_thr (float): The threshold to visualize the bboxes and masks.
        out_file (str, optional): If specified, the visualization result will
            be written to the out file instead of shown in a window.
    """
    assert isinstance(class_names, (tuple, list))
    img = mmcv.imread(img)
    if isinstance(result, tuple):
        bbox_result, segm_result = result
    else:
        bbox_result, segm_result = result, None
    bboxes = np.vstack(bbox_result)
    # draw segmentation masks
    if segm_result is not None:
        segms = mmcv.concat_list(segm_result)
        inds = np.where(bboxes[:, -1] > score_thr)[0]
        for i in inds:
            color_mask = np.random.randint(0, 256, (1, 3), dtype=np.uint8)
            mask = maskUtils.decode(segms[i]).astype(np.bool)
            img[mask] = img[mask] * 0.5 + color_mask * 0.5
    # draw bounding boxes
    labels = [
        np.full(bbox.shape[0], i, dtype=np.int32)
        for i, bbox in enumerate(bbox_result)
    ]
    labels = np.concatenate(labels)
    mmcv.imshow_det_bboxes(
        img.copy(),
        bboxes,
        labels,
        class_names=class_names,
        score_thr=score_thr,
        show=out_file is None,
        out_file=out_file) 
開發者ID:dingjiansw101,項目名稱:AerialDetection,代碼行數:43,代碼來源:inference.py

示例4: show_result

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import imshow_det_bboxes [as 別名]
def show_result(img, result, dataset='coco', score_thr=0.3):
    class_names = get_classes(dataset)
    labels = [
        np.full(bbox.shape[0], i, dtype=np.int32)
        for i, bbox in enumerate(result)
    ]
    labels = np.concatenate(labels)
    bboxes = np.vstack(result)
    img = mmcv.imread(img)
    mmcv.imshow_det_bboxes(
        img.copy(),
        bboxes,
        labels,
        class_names=class_names,
        score_thr=score_thr) 
開發者ID:chanyn,項目名稱:Reasoning-RCNN,代碼行數:17,代碼來源:inference.py

示例5: show_result

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import imshow_det_bboxes [as 別名]
def show_result(self,
                    data,
                    bbox_result,
                    img_norm_cfg,
                    dataset='ava',
                    score_thr=0.3):

        img_group_tensor = data['img_group_0'][0]
        img_metas = data['img_meta'][0].data[0]
        imgs = tensor2video_snaps(img_group_tensor, **img_norm_cfg)
        assert len(imgs) == len(img_metas)

        if isinstance(dataset, str):
            class_names = get_classes(dataset)
        elif isinstance(dataset, (list, tuple)) or dataset is None:
            class_names = dataset
        else:
            raise TypeError(
                'dataset must be a valid dataset name or a sequence'
                ' of class names, not {}'.format(type(dataset)))

        for img, img_meta in zip(imgs, img_metas):
            h, w, _ = img_meta['img_shape']
            img_show = img[:h, :w, :]

            bboxes = np.vstack(bbox_result)
            # draw bounding boxes
            labels = [
                np.full(bbox.shape[0], i, dtype=np.int32)
                for i, bbox in enumerate(bbox_result)
            ]
            labels = np.concatenate(labels)
            mmcv.imshow_det_bboxes(
                img_show,
                bboxes,
                labels,
                class_names=class_names,
                score_thr=score_thr) 
開發者ID:open-mmlab,項目名稱:mmaction,代碼行數:40,代碼來源:base.py

示例6: show_result

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import imshow_det_bboxes [as 別名]
def show_result(img, result, dataset='coco', score_thr=0.5, out_file=None, wait_time=0):
    img = mmcv.imread(img)
    class_names = get_classes(dataset)
    if isinstance(result, tuple):
        bbox_result, segm_result = result
    else:
        bbox_result, segm_result = result, None
    bboxes = np.vstack(bbox_result)
    # draw segmentation masks
    if segm_result is not None:
        segms = mmcv.concat_list(segm_result)
        inds = np.where(bboxes[:, -1] > score_thr)[0]
        for i in inds:
            color_mask = np.random.randint(
                0, 256, (1, 3), dtype=np.uint8)
            mask = maskUtils.decode(segms[i]).astype(np.bool)
            img[mask] = img[mask] * 0.5 + color_mask * 0.5
    # draw bounding boxes
    labels = [
        np.full(bbox.shape[0], i, dtype=np.int32)
        for i, bbox in enumerate(bbox_result)
    ]
    labels = np.concatenate(labels)

    mmcv.imshow_det_bboxes(
        img.copy(),
        bboxes,
        labels,
        class_names=class_names,
        score_thr=score_thr,
        show=out_file is None,
        wait_time=wait_time)

    return re_bboxes, re_scores 
開發者ID:lxy5513,項目名稱:hrnet,代碼行數:36,代碼來源:inference.py

示例7: show_result

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import imshow_det_bboxes [as 別名]
def show_result(img, result, dataset='coco', score_thr=0.3, out_file=None):
    img = mmcv.imread(img)
    class_names = get_classes(dataset)
    if isinstance(result, tuple):
        bbox_result, segm_result = result
    else:
        bbox_result, segm_result = result, None
    bboxes = np.vstack(bbox_result)
    # draw segmentation masks
    if segm_result is not None:
        segms = mmcv.concat_list(segm_result)
        inds = np.where(bboxes[:, -1] > score_thr)[0]
        for i in inds:
            color_mask = np.random.randint(
                0, 256, (1, 3), dtype=np.uint8)
            mask = maskUtils.decode(segms[i]).astype(np.bool)
            img[mask] = img[mask] * 0.5 + color_mask * 0.5
    # draw bounding boxes
    labels = [
        np.full(bbox.shape[0], i, dtype=np.int32)
        for i, bbox in enumerate(bbox_result)
    ]
    labels = np.concatenate(labels)
    mmcv.imshow_det_bboxes(
        img.copy(),
        bboxes,
        labels,
        class_names=class_names,
        score_thr=score_thr,
        show=out_file is None) 
開發者ID:Gus-Guo,項目名稱:AugFPN,代碼行數:32,代碼來源:inference.py

示例8: show_result

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import imshow_det_bboxes [as 別名]
def show_result(self,
                    data,
                    result,
                    img_norm_cfg,
                    dataset=None,
                    score_thr=0.3):
        if isinstance(result, tuple):
            bbox_result, segm_result = result
        else:
            bbox_result, segm_result = result, None

        img_tensor = data['img'][0]
        img_metas = data['img_meta'][0].data[0]
        imgs = tensor2imgs(img_tensor, **img_norm_cfg)
        assert len(imgs) == len(img_metas)

        if dataset is None:
            class_names = self.CLASSES
        elif isinstance(dataset, str):
            class_names = get_classes(dataset)
        elif isinstance(dataset, (list, tuple)):
            class_names = dataset
        else:
            raise TypeError(
                'dataset must be a valid dataset name or a sequence'
                ' of class names, not {}'.format(type(dataset)))

        for img, img_meta in zip(imgs, img_metas):
            h, w, _ = img_meta['img_shape']
            img_show = img[:h, :w, :]

            bboxes = np.vstack(bbox_result)
            # draw segmentation masks
            if segm_result is not None:
                segms = mmcv.concat_list(segm_result)
                inds = np.where(bboxes[:, -1] > score_thr)[0]
                for i in inds:
                    color_mask = np.random.randint(
                        0, 256, (1, 3), dtype=np.uint8)
                    mask = maskUtils.decode(segms[i]).astype(np.bool)
                    img_show[mask] = img_show[mask] * 0.5 + color_mask * 0.5
            # draw bounding boxes
            labels = [
                np.full(bbox.shape[0], i, dtype=np.int32)
                for i, bbox in enumerate(bbox_result)
            ]
            labels = np.concatenate(labels)
            mmcv.imshow_det_bboxes(
                img_show,
                bboxes,
                labels,
                class_names=class_names,
                score_thr=score_thr) 
開發者ID:dingjiansw101,項目名稱:AerialDetection,代碼行數:55,代碼來源:base.py

示例9: show_result

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import imshow_det_bboxes [as 別名]
def show_result(img,
                result,
                class_names,
                score_thr=0.3,
                wait_time=0,
                show=True,
                out_file=None):
    """Visualize the detection results on the image.

    Args:
        img (str or np.ndarray): Image filename or loaded image.
        result (tuple[list] or list): The detection result, can be either
            (bbox, segm) or just bbox.
        class_names (list[str] or tuple[str]): A list of class names.
        score_thr (float): The threshold to visualize the bboxes and masks.
        wait_time (int): Value of waitKey param.
        show (bool, optional): Whether to show the image with opencv or not.
        out_file (str, optional): If specified, the visualization result will
            be written to the out file instead of shown in a window.

    Returns:
        np.ndarray or None: If neither `show` nor `out_file` is specified, the
            visualized image is returned, otherwise None is returned.
    """
    assert isinstance(class_names, (tuple, list))
    img = mmcv.imread(img)
    img = img.copy()
    if isinstance(result, tuple):
        bbox_result, segm_result = result
    else:
        bbox_result, segm_result = result, None
    bboxes = np.vstack(bbox_result)
    # draw segmentation masks
    if segm_result is not None:
        segms = mmcv.concat_list(segm_result)
        inds = np.where(bboxes[:, -1] > score_thr)[0]
        for i in inds:
            color_mask = np.random.randint(0, 256, (1, 3), dtype=np.uint8)
            mask = maskUtils.decode(segms[i]).astype(np.bool)
            img[mask] = img[mask] * 0.5 + color_mask * 0.5
    # draw bounding boxes
    labels = [
        np.full(bbox.shape[0], i, dtype=np.int32)
        for i, bbox in enumerate(bbox_result)
    ]
    labels = np.concatenate(labels)
    mmcv.imshow_det_bboxes(
        img,
        bboxes,
        labels,
        class_names=class_names,
        score_thr=score_thr,
        show=show,
        wait_time=wait_time,
        out_file=out_file)
    if not (show or out_file):
        return img 
開發者ID:xieenze,項目名稱:PolarMask,代碼行數:59,代碼來源:inference.py

示例10: show_result

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import imshow_det_bboxes [as 別名]
def show_result(self, data, result, dataset=None, score_thr=0.3):
        if isinstance(result, tuple):
            bbox_result, segm_result = result
        else:
            bbox_result, segm_result = result, None

        img_tensor = data['img'][0]
        img_metas = data['img_meta'][0].data[0]
        imgs = tensor2imgs(img_tensor, **img_metas[0]['img_norm_cfg'])
        assert len(imgs) == len(img_metas)

        if dataset is None:
            class_names = self.CLASSES
        elif isinstance(dataset, str):
            class_names = get_classes(dataset)
        elif isinstance(dataset, (list, tuple)):
            class_names = dataset
        else:
            raise TypeError(
                'dataset must be a valid dataset name or a sequence'
                ' of class names, not {}'.format(type(dataset)))

        for img, img_meta in zip(imgs, img_metas):
            h, w, _ = img_meta['img_shape']
            img_show = img[:h, :w, :]

            bboxes = np.vstack(bbox_result)
            # draw segmentation masks
            if segm_result is not None:
                segms = mmcv.concat_list(segm_result)
                inds = np.where(bboxes[:, -1] > score_thr)[0]
                for i in inds:
                    color_mask = np.random.randint(
                        0, 256, (1, 3), dtype=np.uint8)
                    mask = maskUtils.decode(segms[i]).astype(np.bool)
                    img_show[mask] = img_show[mask] * 0.5 + color_mask * 0.5
            # draw bounding boxes
            labels = [
                np.full(bbox.shape[0], i, dtype=np.int32)
                for i, bbox in enumerate(bbox_result)
            ]
            labels = np.concatenate(labels)
            mmcv.imshow_det_bboxes(
                img_show,
                bboxes,
                labels,
                class_names=class_names,
                score_thr=score_thr) 
開發者ID:tascj,項目名稱:kaggle-kuzushiji-recognition,代碼行數:50,代碼來源:base.py

示例11: show_result

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import imshow_det_bboxes [as 別名]
def show_result(self,
                    data,
                    result,
                    img_norm_cfg,
                    dataset='coco',
                    score_thr=0.3):
        if isinstance(result, tuple):
            bbox_result, segm_result = result
        else:
            bbox_result, segm_result = result, None

        img_tensor = data['img'][0]
        img_metas = data['img_meta'][0].data[0]
        imgs = tensor2imgs(img_tensor, **img_norm_cfg)
        assert len(imgs) == len(img_metas)

        if isinstance(dataset, str):
            class_names = get_classes(dataset)
        elif isinstance(dataset, (list, tuple)) or dataset is None:
            class_names = dataset
        else:
            raise TypeError(
                'dataset must be a valid dataset name or a sequence'
                ' of class names, not {}'.format(type(dataset)))

        for img, img_meta in zip(imgs, img_metas):
            h, w, _ = img_meta['img_shape']
            img_show = img[:h, :w, :]

            bboxes = np.vstack(bbox_result)
            # draw segmentation masks
            if segm_result is not None:
                segms = mmcv.concat_list(segm_result)
                inds = np.where(bboxes[:, -1] > score_thr)[0]
                for i in inds:
                    color_mask = np.random.randint(
                        0, 256, (1, 3), dtype=np.uint8)
                    mask = maskUtils.decode(segms[i]).astype(np.bool)
                    img_show[mask] = img_show[mask] * 0.5 + color_mask * 0.5
            # draw bounding boxes
            labels = [
                np.full(bbox.shape[0], i, dtype=np.int32)
                for i, bbox in enumerate(bbox_result)
            ]
            labels = np.concatenate(labels)
            mmcv.imshow_det_bboxes(
                img_show,
                bboxes,
                labels,
                class_names=class_names,
                score_thr=score_thr) 
開發者ID:chanyn,項目名稱:Reasoning-RCNN,代碼行數:53,代碼來源:base.py

示例12: worker

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import imshow_det_bboxes [as 別名]
def worker(video_file, index, detection_cfg, skeleton_cfg, skeleon_data_cfg,
           device, result_queue):
    os.environ["CUDA_VISIBLE_DEVICES"] = str(device)
    video_frames = mmcv.VideoReader(video_file)

    # load model
    detection_model_file = detection_cfg.model_cfg
    detection_checkpoint_file = get_mmskeleton_url(
        detection_cfg.checkpoint_file)
    detection_model = init_detector(detection_model_file,
                                    detection_checkpoint_file,
                                    device='cpu')
    skeleton_model_file = skeleton_cfg.model_cfg
    skeletion_checkpoint_file = skeleton_cfg.checkpoint_file
    skeleton_model = init_twodimestimator(skeleton_model_file,
                                          skeletion_checkpoint_file,
                                          device='cpu')

    detection_model = detection_model.cuda()
    skeleton_model = skeleton_model.cuda()

    for idx in index:
        skeleton_result = dict()
        image = video_frames[idx]
        draw_image = image.copy()
        bbox_result = inference_detector(detection_model, image)

        person_bbox, labels = VideoDemo.bbox_filter(bbox_result,
                                                    detection_cfg.bbox_thre)

        if len(person_bbox) > 0:
            person, meta = VideoDemo.skeleton_preprocess(
                image[:, :, ::-1], person_bbox, skeleon_data_cfg)
            preds, maxvals = inference_twodimestimator(skeleton_model,
                                                       person.cuda(), meta,
                                                       True)
            results = VideoDemo.skeleton_postprocess(preds, maxvals, meta)
            if skeleon_data_cfg.save_video:
                file = os.path.join(skeleon_data_cfg.img_dir,
                                    '{}.png'.format(idx))
                mmcv.imshow_det_bboxes(draw_image,
                                       person_bbox,
                                       labels,
                                       detection_model.CLASSES,
                                       score_thr=detection_cfg.bbox_thre,
                                       show=False,
                                       wait_time=0)
                save(image, draw_image, results, file)

        else:
            preds, maxvals = None, None
            if skeleon_data_cfg.save_video:
                file = os.path.join(skeleon_data_cfg.img_dir,
                                    '{}.png'.format(idx))
                mmcv.imwrite(image, file)
        skeleton_result['frame_index'] = idx
        skeleton_result['position_preds'] = preds
        skeleton_result['position_maxvals'] = maxvals
        result_queue.put(skeleton_result) 
開發者ID:open-mmlab,項目名稱:mmskeleton,代碼行數:61,代碼來源:image2skeleton.py


注:本文中的mmcv.imshow_det_bboxes方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。