當前位置: 首頁>>代碼示例>>Python>>正文


Python mmcv.imdenormalize方法代碼示例

本文整理匯總了Python中mmcv.imdenormalize方法的典型用法代碼示例。如果您正苦於以下問題:Python mmcv.imdenormalize方法的具體用法?Python mmcv.imdenormalize怎麽用?Python mmcv.imdenormalize使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mmcv的用法示例。


在下文中一共展示了mmcv.imdenormalize方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: tensor2imgs

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import imdenormalize [as 別名]
def tensor2imgs(tensor, mean=(0, 0, 0), std=(1, 1, 1), to_rgb=True):
    """Convert tensor to images.

    Args:
        tensor (torch.Tensor): Tensor that contains multiple images
        mean (tuple[float], optional): Mean of images. Defaults to (0, 0, 0).
        std (tuple[float], optional): Standard deviation of images.
            Defaults to (1, 1, 1).
        to_rgb (bool, optional): Whether convert the images to RGB format.
            Defaults to True.

    Returns:
        list[np.ndarray]: A list that contains multiple images.
    """
    num_imgs = tensor.size(0)
    mean = np.array(mean, dtype=np.float32)
    std = np.array(std, dtype=np.float32)
    imgs = []
    for img_id in range(num_imgs):
        img = tensor[img_id, ...].cpu().numpy().transpose(1, 2, 0)
        img = mmcv.imdenormalize(
            img, mean, std, to_bgr=to_rgb).astype(np.uint8)
        imgs.append(np.ascontiguousarray(img))
    return imgs 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:26,代碼來源:misc.py

示例2: tensor2imgs

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import imdenormalize [as 別名]
def tensor2imgs(tensor, mean=(0, 0, 0), std=(1, 1, 1), to_rgb=True):
    num_imgs = tensor.size(0)
    mean = np.array(mean, dtype=np.float32)
    std = np.array(std, dtype=np.float32)
    imgs = []
    for img_id in range(num_imgs):
        img = tensor[img_id, ...].cpu().numpy().transpose(1, 2, 0)
        img = mmcv.imdenormalize(
            img, mean, std, to_bgr=to_rgb).astype(np.uint8)
        imgs.append(np.ascontiguousarray(img))
    return imgs 
開發者ID:dingjiansw101,項目名稱:AerialDetection,代碼行數:13,代碼來源:misc.py

示例3: tensor2imgs

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import imdenormalize [as 別名]
def tensor2imgs(tensor, mean=(0, 0, 0), std=(1, 1, 1), to_rgb=True):
    """Convert tensor to 3-channel images.

    Args:
        tensor (torch.Tensor): Tensor that contains multiple images, shape (
            N, C, H, W).
        mean (tuple[float], optional): Mean of images. Defaults to (0, 0, 0).
        std (tuple[float], optional): Standard deviation of images.
            Defaults to (1, 1, 1).
        to_rgb (bool, optional): Whether the tensor was converted to RGB
            format in the first place. If so, convert it back to BGR.
            Defaults to True.

    Returns:
        list[np.ndarray]: A list that contains multiple images.
    """

    if torch is None:
        raise RuntimeError('pytorch is not installed')
    assert torch.is_tensor(tensor) and tensor.ndim == 4
    assert len(mean) == 3
    assert len(std) == 3

    num_imgs = tensor.size(0)
    mean = np.array(mean, dtype=np.float32)
    std = np.array(std, dtype=np.float32)
    imgs = []
    for img_id in range(num_imgs):
        img = tensor[img_id, ...].cpu().numpy().transpose(1, 2, 0)
        img = mmcv.imdenormalize(
            img, mean, std, to_bgr=to_rgb).astype(np.uint8)
        imgs.append(np.ascontiguousarray(img))
    return imgs 
開發者ID:open-mmlab,項目名稱:mmcv,代碼行數:35,代碼來源:misc.py

示例4: test_imdenormalize

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import imdenormalize [as 別名]
def test_imdenormalize(self):
        norm_img = (self.img[:, :, ::-1] - self.mean) / self.std
        rgb_baseline = (norm_img * self.std + self.mean)
        bgr_baseline = rgb_baseline[:, :, ::-1]
        img = mmcv.imdenormalize(norm_img, self.mean, self.std)
        assert np.allclose(img, bgr_baseline)
        img = mmcv.imdenormalize(norm_img, self.mean, self.std, to_bgr=False)
        assert np.allclose(img, rgb_baseline) 
開發者ID:open-mmlab,項目名稱:mmcv,代碼行數:10,代碼來源:test_photometric.py

示例5: main

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import imdenormalize [as 別名]
def main():
    args = parse_args()
    os.makedirs(args.output, exist_ok=True)
    cfg = Config.fromfile(args.config)
    dataset = get_dataset(cfg.data.train)
    for i in tqdm(np.random.randint(0, len(dataset), 500)):
        data = dataset[i]
        img = data['img'].data.numpy().transpose(1, 2, 0)
        masks = data['gt_masks'].data.transpose(1, 2, 0).astype(bool)
        bboxes = data['gt_bboxes'].data.numpy()
        img = mmcv.imdenormalize(img, mean=cfg.img_norm_cfg.mean, std=cfg.img_norm_cfg.std, to_bgr=False)
        img = draw_masks(img, masks).astype(np.uint8)
        draw_bounding_boxes_on_image_array(img, bboxes, use_normalized_coordinates=False, thickness=5)
        cv2.imwrite(osp.join(args.output, f'{i}_{np.random.randint(0, 10000)}.jpg'), img[..., ::-1]) 
開發者ID:amirassov,項目名稱:kaggle-imaterialist,代碼行數:16,代碼來源:eda.py

示例6: tensor2video_snaps

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import imdenormalize [as 別名]
def tensor2video_snaps(tensor, mean=(0, 0, 0), std=(1, 1, 1), to_rgb=True):
    num_videos = tensor.size(0)
    num_frames = tensor.size(2)
    mean = np.array(mean, dtype=np.float32)
    std = np.array(std, dtype=np.float32)
    video_snaps = []
    for vid_id in range(num_videos):
        img = tensor[vid_id, :, num_frames //
                     2, ...].cpu().numpy().transpose(1, 2, 0)
        img = mmcv.imdenormalize(
            img, mean, std, to_bgr=to_rgb).astype(np.uint8)
        video_snaps.append(np.ascontiguousarray(img))
    return video_snaps 
開發者ID:open-mmlab,項目名稱:mmaction,代碼行數:15,代碼來源:misc.py


注:本文中的mmcv.imdenormalize方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。