當前位置: 首頁>>代碼示例>>Python>>正文


Python mmcv.dump方法代碼示例

本文整理匯總了Python中mmcv.dump方法的典型用法代碼示例。如果您正苦於以下問題:Python mmcv.dump方法的具體用法?Python mmcv.dump怎麽用?Python mmcv.dump使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mmcv的用法示例。


在下文中一共展示了mmcv.dump方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: cvt_annotations

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import dump [as 別名]
def cvt_annotations(devkit_path, years, split, out_file):
    if not isinstance(years, list):
        years = [years]
    annotations = []
    for year in years:
        filelist = osp.join(devkit_path, 'VOC{}/ImageSets/Main/{}.txt'.format(
            year, split))
        if not osp.isfile(filelist):
            print('filelist does not exist: {}, skip voc{} {}'.format(
                filelist, year, split))
            return
        img_names = mmcv.list_from_file(filelist)
        xml_paths = [
            osp.join(devkit_path, 'VOC{}/Annotations/{}.xml'.format(
                year, img_name)) for img_name in img_names
        ]
        img_paths = [
            'VOC{}/JPEGImages/{}.jpg'.format(year, img_name)
            for img_name in img_names
        ]
        part_annotations = mmcv.track_progress(parse_xml,
                                               list(zip(xml_paths, img_paths)))
        annotations.extend(part_annotations)
    mmcv.dump(annotations, out_file)
    return annotations 
開發者ID:dingjiansw101,項目名稱:AerialDetection,代碼行數:27,代碼來源:pascal_voc.py

示例2: cvt_annotations

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import dump [as 別名]
def cvt_annotations(devkit_path, years, split, out_file):
    if not isinstance(years, list):
        years = [years]
    annotations = []
    for year in years:
        filelist = osp.join(devkit_path,
                            f'VOC{year}/ImageSets/Main/{split}.txt')
        if not osp.isfile(filelist):
            print(f'filelist does not exist: {filelist}, '
                  f'skip voc{year} {split}')
            return
        img_names = mmcv.list_from_file(filelist)
        xml_paths = [
            osp.join(devkit_path, f'VOC{year}/Annotations/{img_name}.xml')
            for img_name in img_names
        ]
        img_paths = [
            f'VOC{year}/JPEGImages/{img_name}.jpg' for img_name in img_names
        ]
        part_annotations = mmcv.track_progress(parse_xml,
                                               list(zip(xml_paths, img_paths)))
        annotations.extend(part_annotations)
    mmcv.dump(annotations, out_file)
    return annotations 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:26,代碼來源:pascal_voc.py

示例3: results2json

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import dump [as 別名]
def results2json(dataset, results, out_file):
    result_files = dict()
    if isinstance(results[0], list):
        json_results = det2json(dataset, results)
        result_files['bbox'] = '{}.{}.json'.format(out_file, 'bbox')
        result_files['proposal'] = '{}.{}.json'.format(out_file, 'bbox')
        mmcv.dump(json_results, result_files['bbox'])
    elif isinstance(results[0], tuple):
        json_results = segm2json(dataset, results)
        result_files['bbox'] = '{}.{}.json'.format(out_file, 'bbox')
        result_files['proposal'] = '{}.{}.json'.format(out_file, 'bbox')
        result_files['segm'] = '{}.{}.json'.format(out_file, 'segm')
        mmcv.dump(json_results[0], result_files['bbox'])
        mmcv.dump(json_results[1], result_files['segm'])
    elif isinstance(results[0], np.ndarray):
        json_results = proposal2json(dataset, results)
        result_files['proposal'] = '{}.{}.json'.format(out_file, 'proposal')
        mmcv.dump(json_results, result_files['proposal'])
    else:
        raise TypeError('invalid type of results')
    return result_files 
開發者ID:xvjiarui,項目名稱:GCNet,代碼行數:23,代碼來源:coco_utils.py

示例4: prepare_test

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import dump [as 別名]
def prepare_test():
    df = pd.read_csv('../data/sample_submission.csv', keep_default_na=False)
    img_dir = Path('../data/test_images')

    images = []
    for img_id, row in tqdm(df.iterrows()):
        filename = row['image_id'] + '.jpg'
        img = Image.open(img_dir / filename)
        images.append({
            'filename': filename,
            'width': img.width,
            'height': img.height,
            'ann': {
                'bboxes': np.array([], dtype=np.float32).reshape(-1, 4),
                'labels': np.array([], dtype=np.int64).reshape(-1, ),
                'bboxes_ignore': np.array([], dtype=np.float32).reshape(-1, 4),
                'labels_ignore': np.array([], dtype=np.int64).reshape(-1, )
            }
        })
    mmcv.dump(images, '../data/dtest.pkl') 
開發者ID:tascj,項目名稱:kaggle-kuzushiji-recognition,代碼行數:22,代碼來源:prepare_det.py

示例5: _barrier

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import dump [as 別名]
def _barrier(self, rank, world_size):
        """Due to some issues with `torch.distributed.barrier()`, we have to
        implement this ugly barrier function.
        """
        if rank == 0:
            for i in range(1, world_size):
                tmp = osp.join(self.lock_dir, '{}.pkl'.format(i))
                while not (osp.exists(tmp)):
                    time.sleep(1)
            for i in range(1, world_size):
                tmp = osp.join(self.lock_dir, '{}.pkl'.format(i))
                os.remove(tmp)
        else:
            tmp = osp.join(self.lock_dir, '{}.pkl'.format(rank))
            mmcv.dump([], tmp)
            while osp.exists(tmp):
                time.sleep(1) 
開發者ID:chanyn,項目名稱:Reasoning-RCNN,代碼行數:19,代碼來源:eval_hooks.py

示例6: main

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import dump [as 別名]
def main():
    args = parse_args()

    benchmark_type = []
    if args.basic_arch:
        benchmark_type += basic_arch_root
    if args.datasets:
        benchmark_type += datasets_root
    if args.data_pipeline:
        benchmark_type += data_pipeline_root
    if args.nn_module:
        benchmark_type += nn_module_root

    config_dpath = 'configs/'
    benchmark_configs = []
    for cfg_root in benchmark_type:
        cfg_dir = osp.join(config_dpath, cfg_root)
        configs = os.scandir(cfg_dir)
        for cfg in configs:
            config_path = osp.join(cfg_dir, cfg.name)
            if (config_path in benchmark_pool
                    and config_path not in benchmark_configs):
                benchmark_configs.append(config_path)

    print(f'Totally found {len(benchmark_configs)} configs to benchmark')
    config_dicts = dict(models=benchmark_configs)
    mmcv.dump(config_dicts, 'regression_test_configs.json') 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:29,代碼來源:benchmark_filter.py

示例7: collect_results_cpu

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import dump [as 別名]
def collect_results_cpu(result_part, size, tmpdir=None):
    rank, world_size = get_dist_info()
    # create a tmp dir if it is not specified
    if tmpdir is None:
        MAX_LEN = 512
        # 32 is whitespace
        dir_tensor = torch.full((MAX_LEN, ),
                                32,
                                dtype=torch.uint8,
                                device='cuda')
        if rank == 0:
            tmpdir = tempfile.mkdtemp()
            tmpdir = torch.tensor(
                bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda')
            dir_tensor[:len(tmpdir)] = tmpdir
        dist.broadcast(dir_tensor, 0)
        tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip()
    else:
        mmcv.mkdir_or_exist(tmpdir)
    # dump the part result to the dir
    mmcv.dump(result_part, osp.join(tmpdir, f'part_{rank}.pkl'))
    dist.barrier()
    # collect all parts
    if rank != 0:
        return None
    else:
        # load results of all parts from tmp dir
        part_list = []
        for i in range(world_size):
            part_file = osp.join(tmpdir, f'part_{i}.pkl')
            part_list.append(mmcv.load(part_file))
        # sort the results
        ordered_results = []
        for res in zip(*part_list):
            ordered_results.extend(list(res))
        # the dataloader may pad some samples
        ordered_results = ordered_results[:size]
        # remove tmp dir
        shutil.rmtree(tmpdir)
        return ordered_results 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:42,代碼來源:test.py

示例8: collect_results_gpu

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import dump [as 別名]
def collect_results_gpu(result_part, size):
    rank, world_size = get_dist_info()
    # dump result part to tensor with pickle
    part_tensor = torch.tensor(
        bytearray(pickle.dumps(result_part)), dtype=torch.uint8, device='cuda')
    # gather all result part tensor shape
    shape_tensor = torch.tensor(part_tensor.shape, device='cuda')
    shape_list = [shape_tensor.clone() for _ in range(world_size)]
    dist.all_gather(shape_list, shape_tensor)
    # padding result part tensor to max length
    shape_max = torch.tensor(shape_list).max()
    part_send = torch.zeros(shape_max, dtype=torch.uint8, device='cuda')
    part_send[:shape_tensor[0]] = part_tensor
    part_recv_list = [
        part_tensor.new_zeros(shape_max) for _ in range(world_size)
    ]
    # gather all result part
    dist.all_gather(part_recv_list, part_send)

    if rank == 0:
        part_list = []
        for recv, shape in zip(part_recv_list, shape_list):
            part_list.append(
                pickle.loads(recv[:shape[0]].cpu().numpy().tobytes()))
        # sort the results
        ordered_results = []
        for res in zip(*part_list):
            ordered_results.extend(list(res))
        # the dataloader may pad some samples
        ordered_results = ordered_results[:size]
        return ordered_results 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:33,代碼來源:test.py

示例9: results2json

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import dump [as 別名]
def results2json(self, results, outfile_prefix):
        """Dump the detection results to a COCO style json file.

        There are 3 types of results: proposals, bbox predictions, mask
        predictions, and they have different data types. This method will
        automatically recognize the type, and dump them to json files.

        Args:
            results (list[list | tuple | ndarray]): Testing results of the
                dataset.
            outfile_prefix (str): The filename prefix of the json files. If the
                prefix is "somepath/xxx", the json files will be named
                "somepath/xxx.bbox.json", "somepath/xxx.segm.json",
                "somepath/xxx.proposal.json".

        Returns:
            dict[str: str]: Possible keys are "bbox", "segm", "proposal", and
                values are corresponding filenames.
        """
        result_files = dict()
        if isinstance(results[0], list):
            json_results = self._det2json(results)
            result_files['bbox'] = f'{outfile_prefix}.bbox.json'
            result_files['proposal'] = f'{outfile_prefix}.bbox.json'
            mmcv.dump(json_results, result_files['bbox'])
        elif isinstance(results[0], tuple):
            json_results = self._segm2json(results)
            result_files['bbox'] = f'{outfile_prefix}.bbox.json'
            result_files['proposal'] = f'{outfile_prefix}.bbox.json'
            result_files['segm'] = f'{outfile_prefix}.segm.json'
            mmcv.dump(json_results[0], result_files['bbox'])
            mmcv.dump(json_results[1], result_files['segm'])
        elif isinstance(results[0], np.ndarray):
            json_results = self._proposal2json(results)
            result_files['proposal'] = f'{outfile_prefix}.proposal.json'
            mmcv.dump(json_results, result_files['proposal'])
        else:
            raise TypeError('invalid type of results')
        return result_files 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:41,代碼來源:coco.py

示例10: collect_results

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import dump [as 別名]
def collect_results(result_part, size, tmpdir=None):
    rank, world_size = get_dist_info()
    # create a tmp dir if it is not specified
    if tmpdir is None:
        MAX_LEN = 512
        # 32 is whitespace
        dir_tensor = torch.full((MAX_LEN, ),
                                32,
                                dtype=torch.uint8,
                                device='cuda')
        if rank == 0:
            tmpdir = tempfile.mkdtemp()
            tmpdir = torch.tensor(
                bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda')
            dir_tensor[:len(tmpdir)] = tmpdir
        dist.broadcast(dir_tensor, 0)
        tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip()
    else:
        mmcv.mkdir_or_exist(tmpdir)
    # dump the part result to the dir
    mmcv.dump(result_part, osp.join(tmpdir, f'part_{rank}.pkl'))
    dist.barrier()
    # collect all parts
    if rank != 0:
        return None
    else:
        # load results of all parts from tmp dir
        part_list = []
        for i in range(world_size):
            part_file = osp.join(tmpdir, f'part_{i}.pkl')
            part_list.append(mmcv.load(part_file))
        # sort the results
        ordered_results = []
        for res in zip(*part_list):
            ordered_results.extend(list(res))
        # the dataloader may pad some samples
        ordered_results = ordered_results[:size]
        # remove tmp dir
        shutil.rmtree(tmpdir)
        return ordered_results 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:42,代碼來源:test_robustness.py

示例11: after_train_epoch

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import dump [as 別名]
def after_train_epoch(self, runner):
        if not self.every_n_epochs(runner, self.interval):
            return
        runner.model.eval()
        results = [None for _ in range(len(self.dataset))]
        if runner.rank == 0:
            prog_bar = mmcv.ProgressBar(len(self.dataset))
        for idx in range(runner.rank, len(self.dataset), runner.world_size):
            data = self.dataset[idx]
            data_gpu = scatter(
                collate([data], samples_per_gpu=1),
                [torch.cuda.current_device()])[0]

            # compute output
            with torch.no_grad():
                result = runner.model(
                    return_loss=False, rescale=True, **data_gpu)
            results[idx] = result

            batch_size = runner.world_size
            if runner.rank == 0:
                for _ in range(batch_size):
                    prog_bar.update()

        if runner.rank == 0:
            print('\n')
            dist.barrier()
            for i in range(1, runner.world_size):
                tmp_file = osp.join(runner.work_dir, 'temp_{}.pkl'.format(i))
                tmp_results = mmcv.load(tmp_file)
                for idx in range(i, len(results), runner.world_size):
                    results[idx] = tmp_results[idx]
                os.remove(tmp_file)
            self.evaluate(runner, results)
        else:
            tmp_file = osp.join(runner.work_dir,
                                'temp_{}.pkl'.format(runner.rank))
            mmcv.dump(results, tmp_file)
            dist.barrier()
        dist.barrier() 
開發者ID:dingjiansw101,項目名稱:AerialDetection,代碼行數:42,代碼來源:eval_hooks.py

示例12: results2json

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import dump [as 別名]
def results2json(dataset, results, out_file):
    if isinstance(results[0], list):
        json_results = det2json(dataset, results)
    elif isinstance(results[0], tuple):
        json_results = segm2json(dataset, results)
    elif isinstance(results[0], np.ndarray):
        json_results = proposal2json(dataset, results)
    else:
        raise TypeError('invalid type of results')
    mmcv.dump(json_results, out_file) 
開發者ID:dingjiansw101,項目名稱:AerialDetection,代碼行數:12,代碼來源:coco_utils.py

示例13: collect_results

# 需要導入模塊: import mmcv [as 別名]
# 或者: from mmcv import dump [as 別名]
def collect_results(result_part, size, tmpdir=None):
    rank, world_size = get_dist_info()
    # create a tmp dir if it is not specified
    if tmpdir is None:
        MAX_LEN = 512
        # 32 is whitespace
        dir_tensor = torch.full((MAX_LEN, ),
                                32,
                                dtype=torch.uint8,
                                device='cuda')
        if rank == 0:
            tmpdir = tempfile.mkdtemp()
            tmpdir = torch.tensor(
                bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda')
            dir_tensor[:len(tmpdir)] = tmpdir
        dist.broadcast(dir_tensor, 0)
        tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip()
    else:
        mmcv.mkdir_or_exist(tmpdir)
    # dump the part result to the dir
    mmcv.dump(result_part, osp.join(tmpdir, 'part_{}.pkl'.format(rank)))
    dist.barrier()
    # collect all parts
    if rank != 0:
        return None
    else:
        # load results of all parts from tmp dir
        part_list = []
        for i in range(world_size):
            part_file = osp.join(tmpdir, 'part_{}.pkl'.format(i))
            part_list.append(mmcv.load(part_file))
        # sort the results
        ordered_results = []
        for res in zip(*part_list):
            ordered_results.extend(list(res))
        # the dataloader may pad some samples
        ordered_results = ordered_results[:size]
        # remove tmp dir
        shutil.rmtree(tmpdir)
        return ordered_results 
開發者ID:dingjiansw101,項目名稱:AerialDetection,代碼行數:42,代碼來源:test_robustness.py


注:本文中的mmcv.dump方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。