當前位置: 首頁>>代碼示例>>Python>>正文


Python tracking.MlflowClient方法代碼示例

本文整理匯總了Python中mlflow.tracking.MlflowClient方法的典型用法代碼示例。如果您正苦於以下問題:Python tracking.MlflowClient方法的具體用法?Python tracking.MlflowClient怎麽用?Python tracking.MlflowClient使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mlflow.tracking的用法示例。


在下文中一共展示了tracking.MlflowClient方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _retrieve_mlflow_experiment_id

# 需要導入模塊: from mlflow import tracking [as 別名]
# 或者: from mlflow.tracking import MlflowClient [as 別名]
def _retrieve_mlflow_experiment_id(name, create=False):
        experiment_id = None
        if name:
            existing_experiment = MlflowClient().get_experiment_by_name(name)
            if existing_experiment:
                experiment_id = existing_experiment.experiment_id
            else:
                if create:
                    experiment_id = mlflow.create_experiment(name)
                else:
                    raise Exception(
                        'Experiment "{}" not found in {}'.format(
                            name, mlflow.get_tracking_uri()
                        )
                    )
        return experiment_id 
開發者ID:Unbabel,項目名稱:OpenKiwi,代碼行數:18,代碼來源:loggers.py

示例2: __init__

# 需要導入模塊: from mlflow import tracking [as 別名]
# 或者: from mlflow.tracking import MlflowClient [as 別名]
def __init__(self,
                 experiment_name: str = 'default',
                 tracking_uri: Optional[str] = None,
                 tags: Optional[Dict[str, Any]] = None,
                 save_dir: Optional[str] = None):

        if not _MLFLOW_AVAILABLE:
            raise ImportError('You want to use `mlflow` logger which is not installed yet,'
                              ' install it with `pip install mlflow`.')
        super().__init__()
        if not tracking_uri and save_dir:
            tracking_uri = f'file:{os.sep * 2}{save_dir}'
        self._mlflow_client = MlflowClient(tracking_uri)
        self.experiment_name = experiment_name
        self._run_id = None
        self.tags = tags 
開發者ID:PyTorchLightning,項目名稱:pytorch-lightning,代碼行數:18,代碼來源:mlflow.py

示例3: _wait_for

# 需要導入模塊: from mlflow import tracking [as 別名]
# 或者: from mlflow.tracking import MlflowClient [as 別名]
def _wait_for(submitted_run_obj):
    """Wait on the passed-in submitted run, reporting its status to the tracking server."""
    run_id = submitted_run_obj.run_id
    active_run = None
    # Note: there's a small chance we fail to report the run's status to the tracking server if
    # we're interrupted before we reach the try block below
    try:
        active_run = tracking.MlflowClient().get_run(run_id) if run_id is not None else None
        if submitted_run_obj.wait():
            _logger.info("=== Run (ID '%s') succeeded ===", run_id)
            _maybe_set_run_terminated(active_run, "FINISHED")
        else:
            _maybe_set_run_terminated(active_run, "FAILED")
            raise ExecutionException("Run (ID '%s') failed" % run_id)
    except KeyboardInterrupt:
        _logger.error("=== Run (ID '%s') interrupted, cancelling run ===", run_id)
        submitted_run_obj.cancel()
        _maybe_set_run_terminated(active_run, "FAILED")
        raise 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:21,代碼來源:__init__.py

示例4: _print_description_and_log_tags

# 需要導入模塊: from mlflow import tracking [as 別名]
# 或者: from mlflow.tracking import MlflowClient [as 別名]
def _print_description_and_log_tags(self):
        _logger.info(
            "=== Launched MLflow run as Databricks job run with ID %s."
            " Getting run status page URL... ===",
            self._databricks_run_id)
        run_info = self._job_runner.jobs_runs_get(self._databricks_run_id)
        jobs_page_url = run_info["run_page_url"]
        _logger.info("=== Check the run's status at %s ===", jobs_page_url)
        host_creds = databricks_utils.get_databricks_host_creds(self._job_runner.databricks_profile)
        tracking.MlflowClient().set_tag(self._mlflow_run_id,
                                        MLFLOW_DATABRICKS_RUN_URL, jobs_page_url)
        tracking.MlflowClient().set_tag(self._mlflow_run_id,
                                        MLFLOW_DATABRICKS_SHELL_JOB_RUN_ID, self._databricks_run_id)
        tracking.MlflowClient().set_tag(self._mlflow_run_id,
                                        MLFLOW_DATABRICKS_WEBAPP_URL, host_creds.host)
        job_id = run_info.get('job_id')
        # In some releases of Databricks we do not return the job ID. We start including it in DB
        # releases 2.80 and above.
        if job_id is not None:
            tracking.MlflowClient().set_tag(self._mlflow_run_id,
                                            MLFLOW_DATABRICKS_SHELL_JOB_ID, job_id) 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:23,代碼來源:databricks.py

示例5: test_set_experiment

# 需要導入模塊: from mlflow import tracking [as 別名]
# 或者: from mlflow.tracking import MlflowClient [as 別名]
def test_set_experiment():
    with pytest.raises(TypeError):
        mlflow.set_experiment()  # pylint: disable=no-value-for-parameter

    with pytest.raises(Exception):
        mlflow.set_experiment(None)

    with pytest.raises(Exception):
        mlflow.set_experiment("")

    name = "random_exp"
    exp_id = mlflow.create_experiment(name)
    mlflow.set_experiment(name)
    with start_run() as run:
        assert run.info.experiment_id == exp_id

    another_name = "another_experiment"
    mlflow.set_experiment(another_name)
    exp_id2 = mlflow.tracking.MlflowClient().get_experiment_by_name(another_name)
    with start_run() as another_run:
        assert another_run.info.experiment_id == exp_id2.experiment_id 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:23,代碼來源:test_tracking.py

示例6: test_parent_create_run

# 需要導入模塊: from mlflow import tracking [as 別名]
# 或者: from mlflow.tracking import MlflowClient [as 別名]
def test_parent_create_run():
    with mlflow.start_run() as parent_run:
        parent_run_id = parent_run.info.run_id
    os.environ[_RUN_ID_ENV_VAR] = parent_run_id
    with mlflow.start_run() as parent_run:
        assert parent_run.info.run_id == parent_run_id
        with pytest.raises(Exception, match='To start a nested run'):
            mlflow.start_run()
        with mlflow.start_run(nested=True) as child_run:
            assert child_run.info.run_id != parent_run_id
            with mlflow.start_run(nested=True) as grand_child_run:
                pass

    def verify_has_parent_id_tag(child_id, expected_parent_id):
        tags = tracking.MlflowClient().get_run(child_id).data.tags
        assert tags[MLFLOW_PARENT_RUN_ID] == expected_parent_id

    verify_has_parent_id_tag(child_run.info.run_id, parent_run.info.run_id)
    verify_has_parent_id_tag(grand_child_run.info.run_id, child_run.info.run_id)
    assert mlflow.active_run() is None 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:22,代碼來源:test_tracking.py

示例7: test_client_registry_operations_raise_exception_with_unsupported_registry_store

# 需要導入模塊: from mlflow import tracking [as 別名]
# 或者: from mlflow.tracking import MlflowClient [as 別名]
def test_client_registry_operations_raise_exception_with_unsupported_registry_store():
    """
    This test case ensures that Model Registry operations invoked on the `MlflowClient`
    fail with an informative error message when the registry store URI refers to a
    store that does not support Model Registry features (e.g., FileStore).
    """
    with TempDir() as tmp:
        client = MlflowClient(registry_uri=tmp.path())
        expected_failure_functions = [
            client._get_registry_client,
            lambda: client.create_registered_model("test"),
            lambda: client.get_registered_model("test"),
            lambda: client.create_model_version("test", "source", "run_id"),
            lambda: client.get_model_version("test", 1),
        ]
        for func in expected_failure_functions:
            with pytest.raises(MlflowException) as exc:
                func()
            assert exc.value.error_code == ErrorCode.Name(FEATURE_DISABLED) 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:21,代碼來源:test_client.py

示例8: test_models_artifact_repo_init_with_stage_uri

# 需要導入模塊: from mlflow import tracking [as 別名]
# 或者: from mlflow.tracking import MlflowClient [as 別名]
def test_models_artifact_repo_init_with_stage_uri(
        host_creds_mock):  # pylint: disable=unused-argument
    model_uri = "models:/MyModel/Production"
    artifact_location = "dbfs://databricks/mlflow-registry/12345/models/keras-model"
    model_version_detailed = ModelVersion("MyModel", "10", "2345671890", "234567890",
                                          "some description", "UserID",
                                          "Production", "source", "run12345")
    get_latest_versions_patch = mock.patch.object(MlflowClient, "get_latest_versions",
                                                  return_value=[model_version_detailed])
    get_model_version_download_uri_patch = mock.patch.object(MlflowClient,
                                                             "get_model_version_download_uri",
                                                             return_value=artifact_location)
    with get_latest_versions_patch, get_model_version_download_uri_patch:
        models_repo = ModelsArtifactRepository(model_uri)
        assert models_repo.artifact_uri == model_uri
        assert isinstance(models_repo.repo, DbfsRestArtifactRepository)
        assert models_repo.repo.artifact_uri == artifact_location 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:19,代碼來源:test_models_artifact_repo.py

示例9: test_metric_name

# 需要導入模塊: from mlflow import tracking [as 別名]
# 或者: from mlflow.tracking import MlflowClient [as 別名]
def test_metric_name(tmpdir: py.path.local) -> None:

    tracking_file_name = "file:{}".format(tmpdir)
    metric_name = "my_metric_name"

    mlflc = MLflowCallback(tracking_uri=tracking_file_name, metric_name=metric_name)
    study = optuna.create_study(study_name="my_study")
    study.optimize(_objective_func, n_trials=3, callbacks=[mlflc])

    mlfl_client = MlflowClient(tracking_file_name)
    experiments = mlfl_client.list_experiments()

    experiment = experiments[0]
    experiment_id = experiment.experiment_id

    run_infos = mlfl_client.list_run_infos(experiment_id)

    first_run_id = run_infos[0].run_id
    first_run = mlfl_client.get_run(first_run_id)
    first_run_dict = first_run.to_dictionary()

    assert metric_name in first_run_dict["data"]["metrics"] 
開發者ID:optuna,項目名稱:optuna,代碼行數:24,代碼來源:test_mlflow.py

示例10: configure

# 需要導入模塊: from mlflow import tracking [as 別名]
# 或者: from mlflow.tracking import MlflowClient [as 別名]
def configure(
        self,
        run_uuid,
        experiment_name,
        tracking_uri,
        run_name=None,
        always_log_artifacts=False,
        create_run=True,
        create_experiment=True,
        nest_run=True,
    ):
        if mlflow.active_run() and not nest_run:
            logger.info('Ending previous MLFlow run: {}.'.format(self.run_uuid))
            mlflow.end_run()

        self.always_log_artifacts = always_log_artifacts
        self._experiment_name = experiment_name
        self._run_name = run_name

        # MLflow specific
        if tracking_uri:
            mlflow.set_tracking_uri(tracking_uri)

        if run_uuid:
            existing_run = MlflowClient().get_run(run_uuid)
            if not existing_run and not create_run:
                raise FileNotFoundError(
                    'Run ID {} not found under {}'.format(
                        run_uuid, mlflow.get_tracking_uri()
                    )
                )

        experiment_id = self._retrieve_mlflow_experiment_id(
            experiment_name, create=create_experiment
        )
        return mlflow.start_run(
            run_uuid,
            experiment_id=experiment_id,
            run_name=run_name,
            nested=nest_run,
        ) 
開發者ID:Unbabel,項目名稱:OpenKiwi,代碼行數:43,代碼來源:loggers.py

示例11: experiment_name

# 需要導入模塊: from mlflow import tracking [as 別名]
# 或者: from mlflow.tracking import MlflowClient [as 別名]
def experiment_name(self):
        # return MlflowClient().get_experiment(self.experiment_id).name
        return self._experiment_name 
開發者ID:Unbabel,項目名稱:OpenKiwi,代碼行數:5,代碼來源:loggers.py

示例12: get_run_id

# 需要導入模塊: from mlflow import tracking [as 別名]
# 或者: from mlflow.tracking import MlflowClient [as 別名]
def get_run_id(client: MlflowClient, experiment_name: str, model_key: str) -> str:
    """
    Get an existing or create a new run for the given model_key and experiment_name.

    The model key corresponds to a unique configuration of the model. The corresponding
    run must be manually stopped using the `mlflow.tracking.MlflowClient.set_terminated`
    method.

    Parameters
    ----------
    client: mlflow.tracking.MlflowClient
        Client with tracking uri set to AzureML if configured.
    experiment_name: str
        Name of experiment to log to.
    model_key: str
        Unique ID of model configuration.

    Returns
    -------
    run_id: str
        Unique ID of MLflow run to log to.
    """
    experiment = client.get_experiment_by_name(experiment_name)

    experiment_id = (
        getattr(experiment, "experiment_id")
        if experiment
        else client.create_experiment(experiment_name)
    )
    return client.create_run(experiment_id, tags={"model_key": model_key}).info.run_id 
開發者ID:equinor,項目名稱:gordo,代碼行數:32,代碼來源:mlflow.py

示例13: log_machine

# 需要導入模塊: from mlflow import tracking [as 別名]
# 或者: from mlflow.tracking import MlflowClient [as 別名]
def log_machine(mlflow_client: MlflowClient, run_id: str, machine: Machine):
    """
    Send logs to configured MLflow backend

    Parameters
    ----------
    mlflow_client: MlflowClient
        Client instance to call logging methods from.
    run_id: str
        Unique ID off MLflow Run to log to.
    machine: Machine
        Machine to log with MlflowClient.
    """
    # Log machine metrics and params
    for batch_kwargs in batch_log_items(*get_machine_log_items(machine)):
        mlflow_client.log_batch(run_id, **batch_kwargs)

    # Send configs as JSON artifacts
    try:
        with tempfile.TemporaryDirectory(dir="./") as tmp_dir:
            fp = os.path.join(tmp_dir, f"metadata.json")
            with open(fp, "w") as fh:
                json.dump(machine.to_dict(), fh, cls=MachineEncoder)
            mlflow_client.log_artifacts(run_id=run_id, local_dir=tmp_dir)
    # Map to MlflowLoggingError for coding errors in the model builder
    except Exception as e:
        raise MlflowLoggingError(e) 
開發者ID:equinor,項目名稱:gordo,代碼行數:29,代碼來源:mlflow.py

示例14: _init

# 需要導入模塊: from mlflow import tracking [as 別名]
# 或者: from mlflow.tracking import MlflowClient [as 別名]
def _init(self):
        from mlflow.tracking import MlflowClient
        client = MlflowClient()
        run = client.create_run(self.config.get("mlflow_experiment_id"))
        self._run_id = run.info.run_id
        for key, value in self.config.items():
            client.log_param(self._run_id, key, value)
        self.client = client 
開發者ID:ray-project,項目名稱:ray,代碼行數:10,代碼來源:logger.py

示例15: experiment

# 需要導入模塊: from mlflow import tracking [as 別名]
# 或者: from mlflow.tracking import MlflowClient [as 別名]
def experiment(self) -> MlflowClient:
        r"""
        Actual MLflow object. To use mlflow features in your
        :class:`~pytorch_lightning.core.lightning.LightningModule` do the following.

        Example::

            self.logger.experiment.some_mlflow_function()

        """
        return self._mlflow_client 
開發者ID:PyTorchLightning,項目名稱:pytorch-lightning,代碼行數:13,代碼來源:mlflow.py


注:本文中的mlflow.tracking.MlflowClient方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。