當前位置: 首頁>>代碼示例>>Python>>正文


Python mlflow.start_run方法代碼示例

本文整理匯總了Python中mlflow.start_run方法的典型用法代碼示例。如果您正苦於以下問題:Python mlflow.start_run方法的具體用法?Python mlflow.start_run怎麽用?Python mlflow.start_run使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mlflow的用法示例。


在下文中一共展示了mlflow.start_run方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: start

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import start_run [as 別名]
def start(self):
        """
        Start a new experiment.
        """
        if self.with_mlflow:
            import mlflow

            if mlflow.active_run() is not None:
                active_run = mlflow.active_run()
                self.inherit_existing_run = True
            else:
                active_run = mlflow.start_run(run_name=self.mlflow_run_name, run_id=self.mlflow_run_id)
            mlflow_metadata = {
                'artifact_uri': active_run.info.artifact_uri,
                'experiment_id': active_run.info.experiment_id,
                'run_id': active_run.info.run_id
            }
            self.mlflow_run_id = active_run.info.run_id
            with open(os.path.join(self.logging_directory, 'mlflow.json'), 'w') as f:
                json.dump(mlflow_metadata, f, indent=4) 
開發者ID:nyanp,項目名稱:nyaggle,代碼行數:22,代碼來源:experiment.py

示例2: test_inherit_outer_scope_run

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import start_run [as 別名]
def test_inherit_outer_scope_run(tmpdir_name):
    mlflow.start_run()
    mlflow.log_param('foo', 1)

    params = {
        'objective': 'binary',
        'max_depth': 8
    }
    X, y = make_classification_df()

    run_experiment(params, X, y, with_mlflow=True, logging_directory=tmpdir_name)

    assert mlflow.active_run() is not None  # still valid

    client = mlflow.tracking.MlflowClient()
    data = client.get_run(mlflow.active_run().info.run_id).data

    assert data.metrics['Overall'] > 0  # recorded

    mlflow.end_run() 
開發者ID:nyanp,項目名稱:nyaggle,代碼行數:22,代碼來源:test_run.py

示例3: test_ignore_errors_in_mlflow_params

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import start_run [as 別名]
def test_ignore_errors_in_mlflow_params(tmpdir_name):
    mlflow.start_run()
    mlflow.log_param('features', 'ABC')
    mlflow.log_metric('Overall', -99)

    params = {
        'objective': 'binary',
        'max_depth': 8
    }
    X, y = make_classification_df()

    result = run_experiment(params, X, y, with_mlflow=True, logging_directory=tmpdir_name, feature_list=[])

    client = mlflow.tracking.MlflowClient()
    data = client.get_run(mlflow.active_run().info.run_id).data

    assert data.metrics['Overall'] == result.metrics[-1]
    assert data.params['features'] == 'ABC'  # params cannot be overwritten

    mlflow.end_run() 
開發者ID:nyanp,項目名稱:nyaggle,代碼行數:22,代碼來源:test_run.py

示例4: _log_event

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import start_run [as 別名]
def _log_event(event):
    """
    Extracts metric information from the event protobuf
    """
    if not mlflow.active_run():
        try_mlflow_log(mlflow.start_run)
        global _AUTOLOG_RUN_ID
        _AUTOLOG_RUN_ID = mlflow.active_run().info.run_id
    if event.WhichOneof('what') == 'summary':
        summary = event.summary
        for v in summary.value:
            if v.HasField('simple_value'):
                if (event.step-1) % _LOG_EVERY_N_STEPS == 0:
                    _thread_pool.submit(_add_to_queue, key=v.tag,
                                        value=v.simple_value, step=event.step,
                                        time=int(time.time() * 1000),
                                        run_id=mlflow.active_run().info.run_id) 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:19,代碼來源:tensorflow.py

示例5: etl_data

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import start_run [as 別名]
def etl_data(ratings_csv, max_row_limit):
    with mlflow.start_run() as mlrun:
        tmpdir = tempfile.mkdtemp()
        ratings_parquet_dir = os.path.join(tmpdir, 'ratings-parquet')
        spark = pyspark.sql.SparkSession.builder.getOrCreate()
        print("Converting ratings CSV %s to Parquet %s" % (ratings_csv, ratings_parquet_dir))
        ratings_df = spark.read \
            .option("header", "true") \
            .option("inferSchema", "true") \
            .csv(ratings_csv) \
            .drop("timestamp")  # Drop unused column
        ratings_df.show()
        if max_row_limit != -1:
            ratings_df = ratings_df.limit(max_row_limit)
        ratings_df.write.parquet(ratings_parquet_dir)
        print("Uploading Parquet ratings: %s" % ratings_parquet_dir)
        mlflow.log_artifacts(ratings_parquet_dir, "ratings-parquet-dir") 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:19,代碼來源:etl_data.py

示例6: load_raw_data

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import start_run [as 別名]
def load_raw_data(url):
    with mlflow.start_run() as mlrun:
        local_dir = tempfile.mkdtemp()
        local_filename = os.path.join(local_dir, "ml-20m.zip")
        print("Downloading %s to %s" % (url, local_filename))
        r = requests.get(url, stream=True)
        with open(local_filename, 'wb') as f:
            for chunk in r.iter_content(chunk_size=1024):
                if chunk:  # filter out keep-alive new chunks
                    f.write(chunk)

        extracted_dir = os.path.join(local_dir, 'ml-20m')
        print("Extracting %s into %s" % (local_filename, extracted_dir))
        with zipfile.ZipFile(local_filename, 'r') as zip_ref:
            zip_ref.extractall(local_dir)

        ratings_file = os.path.join(extracted_dir, 'ratings.csv')

        print("Uploading ratings: %s" % ratings_file)
        mlflow.log_artifact(ratings_file, "ratings-csv-dir") 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:22,代碼來源:load_raw_data.py

示例7: test_model_log_persists_specified_conda_env_in_mlflow_model_directory

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import start_run [as 別名]
def test_model_log_persists_specified_conda_env_in_mlflow_model_directory(model, keras_custom_env):
    artifact_path = "model"
    with mlflow.start_run():
        mlflow.keras.log_model(
            keras_model=model, artifact_path=artifact_path, conda_env=keras_custom_env)
        model_path = _download_artifact_from_uri("runs:/{run_id}/{artifact_path}".format(
            run_id=mlflow.active_run().info.run_id, artifact_path=artifact_path))

    pyfunc_conf = _get_flavor_configuration(model_path=model_path, flavor_name=pyfunc.FLAVOR_NAME)
    saved_conda_env_path = os.path.join(model_path, pyfunc_conf[pyfunc.ENV])
    assert os.path.exists(saved_conda_env_path)
    assert saved_conda_env_path != keras_custom_env

    with open(keras_custom_env, "r") as f:
        keras_custom_env_parsed = yaml.safe_load(f)
    with open(saved_conda_env_path, "r") as f:
        saved_conda_env_parsed = yaml.safe_load(f)
    assert saved_conda_env_parsed == keras_custom_env_parsed 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:20,代碼來源:test_keras_model_export.py

示例8: test_cli_build_image_with_runs_uri_calls_expected_azure_routines

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import start_run [as 別名]
def test_cli_build_image_with_runs_uri_calls_expected_azure_routines(sklearn_model):
    artifact_path = "model"
    with mlflow.start_run():
        mlflow.sklearn.log_model(sk_model=sklearn_model, artifact_path=artifact_path)
        run_id = mlflow.active_run().info.run_id
    model_uri = "runs:/{run_id}/{artifact_path}".format(
        run_id=run_id, artifact_path=artifact_path)

    with AzureMLMocks() as aml_mocks:
        result = CliRunner(env={"LC_ALL": "en_US.UTF-8", "LANG": "en_US.UTF-8"}).invoke(
            mlflow.azureml.cli.commands,
            [
                'build-image',
                '-m', model_uri,
                '-w', 'test_workspace',
                '-i', 'image_name',
                '-n', 'model_name',
            ])
        assert result.exit_code == 0

        assert aml_mocks["register_model"].call_count == 1
        assert aml_mocks["create_image"].call_count == 1
        assert aml_mocks["load_workspace"].call_count == 1 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:25,代碼來源:test_image_creation.py

示例9: test_prepare_env_passes

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import start_run [as 別名]
def test_prepare_env_passes(sk_model):
    if no_conda:
        pytest.skip("This test requires conda.")

    with TempDir(chdr=True):
        with mlflow.start_run() as active_run:
            mlflow.sklearn.log_model(sk_model, "model")
            model_uri = "runs:/{run_id}/model".format(run_id=active_run.info.run_id)

        # Test with no conda
        p = subprocess.Popen(["mlflow", "models", "prepare-env", "-m", model_uri,
                              "--no-conda"], stderr=subprocess.PIPE)
        assert p.wait() == 0

        # With conda
        p = subprocess.Popen(["mlflow", "models", "prepare-env", "-m", model_uri],
                             stderr=subprocess.PIPE)
        assert p.wait() == 0

        # Should be idempotent
        p = subprocess.Popen(["mlflow", "models", "prepare-env", "-m", model_uri],
                             stderr=subprocess.PIPE)
        assert p.wait() == 0 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:25,代碼來源:test_cli.py

示例10: test_prepare_env_fails

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import start_run [as 別名]
def test_prepare_env_fails(sk_model):
    if no_conda:
        pytest.skip("This test requires conda.")

    with TempDir(chdr=True):
        with mlflow.start_run() as active_run:
            mlflow.sklearn.log_model(sk_model, "model",
                                     conda_env={"dependencies": ["mlflow-does-not-exist-dep==abc"]})
            model_uri = "runs:/{run_id}/model".format(run_id=active_run.info.run_id)

        # Test with no conda
        p = subprocess.Popen(["mlflow", "models", "prepare-env", "-m", model_uri,
                              "--no-conda"])
        assert p.wait() == 0

        # With conda - should fail due to bad conda environment.
        p = subprocess.Popen(["mlflow", "models", "prepare-env", "-m", model_uri])
        assert p.wait() != 0 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:20,代碼來源:test_cli.py

示例11: test_model_log

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import start_run [as 別名]
def test_model_log():
    with TempDir(chdr=True) as tmp:
        experiment_id = mlflow.create_experiment("test")
        sig = ModelSignature(inputs=Schema([ColSpec("integer", "x"), ColSpec("integer", "y")]),
                             outputs=Schema([ColSpec(name=None, type="double")]))
        input_example = {"x": 1, "y": 2}
        with mlflow.start_run(experiment_id=experiment_id) as r:
            Model.log("some/path", TestFlavor,
                      signature=sig,
                      input_example=input_example)

        local_path = _download_artifact_from_uri("runs:/{}/some/path".format(r.info.run_id),
                                                 output_path=tmp.path(""))
        loaded_model = Model.load(os.path.join(local_path, "MLmodel"))
        assert loaded_model.run_id == r.info.run_id
        assert loaded_model.artifact_path == "some/path"
        assert loaded_model.flavors == {
            "flavor1": {"a": 1, "b": 2},
            "flavor2": {"x": 1, "y": 2},
        }
        assert loaded_model.signature == sig
        path = os.path.join(local_path, loaded_model.saved_input_example_info["artifact_path"])
        x = _dataframe_from_json(path)
        assert x.to_dict(orient="records")[0] == input_example 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:26,代碼來源:test_model.py

示例12: test_autolog_persists_manually_created_run

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import start_run [as 別名]
def test_autolog_persists_manually_created_run():
    mlflow.gluon.autolog()

    data = DataLoader(LogsDataset(), batch_size=128, last_batch="discard")

    with mlflow.start_run() as run:

        model = HybridSequential()
        model.add(Dense(64, activation="relu"))
        model.add(Dense(64, activation="relu"))
        model.add(Dense(10))
        model.initialize()
        model.hybridize()
        trainer = Trainer(model.collect_params(), "adam",
                          optimizer_params={"learning_rate": .001, "epsilon": 1e-07})
        est = estimator.Estimator(net=model, loss=SoftmaxCrossEntropyLoss(),
                                  metrics=Accuracy(), trainer=trainer)

        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            est.fit(data, epochs=3)

        assert mlflow.active_run().info.run_id == run.info.run_id 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:25,代碼來源:test_gluon_autolog.py

示例13: test_sparkml_model_log_without_specified_conda_env_uses_default_env_with_expected_dependencies

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import start_run [as 別名]
def test_sparkml_model_log_without_specified_conda_env_uses_default_env_with_expected_dependencies(
        spark_model_iris):
    artifact_path = "model"
    with mlflow.start_run():
        sparkm.log_model(
            spark_model=spark_model_iris.model, artifact_path=artifact_path, conda_env=None)
        model_uri = "runs:/{run_id}/{artifact_path}".format(
            run_id=mlflow.active_run().info.run_id,
            artifact_path=artifact_path)

    model_path = _download_artifact_from_uri(artifact_uri=model_uri)
    pyfunc_conf = _get_flavor_configuration(model_path=model_path, flavor_name=pyfunc.FLAVOR_NAME)
    conda_env_path = os.path.join(model_path, pyfunc_conf[pyfunc.ENV])
    with open(conda_env_path, "r") as f:
        conda_env = yaml.safe_load(f)

    assert conda_env == sparkm.get_default_conda_env() 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:19,代碼來源:test_spark_model_export.py

示例14: test_mleap_model_log

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import start_run [as 別名]
def test_mleap_model_log(spark_model_iris):
    artifact_path = "model"
    register_model_patch = mock.patch("mlflow.register_model")
    with mlflow.start_run(), register_model_patch:
        sparkm.log_model(spark_model=spark_model_iris.model,
                         sample_input=spark_model_iris.spark_df,
                         artifact_path=artifact_path,
                         registered_model_name="Model1")
        model_uri = "runs:/{run_id}/{artifact_path}".format(
            run_id=mlflow.active_run().info.run_id,
            artifact_path=artifact_path)
        mlflow.register_model.assert_called_once_with(model_uri, "Model1")

    model_path = _download_artifact_from_uri(artifact_uri=model_uri)
    config_path = os.path.join(model_path, "MLmodel")
    mlflow_model = Model.load(config_path)
    assert sparkm.FLAVOR_NAME in mlflow_model.flavors
    assert mleap.FLAVOR_NAME in mlflow_model.flavors 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:20,代碼來源:test_spark_model_export.py

示例15: test_download_artifact_from_absolute_uri_persists_data_to_specified_output_directory

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import start_run [as 別名]
def test_download_artifact_from_absolute_uri_persists_data_to_specified_output_directory(tmpdir):
    artifact_file_name = "artifact.txt"
    artifact_text = "Sample artifact text"
    local_artifact_path = tmpdir.join(artifact_file_name).strpath
    with open(local_artifact_path, "w") as out:
        out.write(artifact_text)

    logged_artifact_subdir = "logged_artifact"
    with mlflow.start_run():
        mlflow.log_artifact(local_path=local_artifact_path, artifact_path=logged_artifact_subdir)
        artifact_uri = mlflow.get_artifact_uri(artifact_path=logged_artifact_subdir)

    artifact_output_path = tmpdir.join("artifact_output").strpath
    os.makedirs(artifact_output_path)
    _download_artifact_from_uri(artifact_uri=artifact_uri, output_path=artifact_output_path)
    assert logged_artifact_subdir in os.listdir(artifact_output_path)
    assert artifact_file_name in os.listdir(
        os.path.join(artifact_output_path, logged_artifact_subdir))
    with open(os.path.join(
            artifact_output_path, logged_artifact_subdir, artifact_file_name), "r") as f:
        assert f.read() == artifact_text 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:23,代碼來源:test_artifact_utils.py


注:本文中的mlflow.start_run方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。