本文整理匯總了Python中mlflow.sklearn方法的典型用法代碼示例。如果您正苦於以下問題:Python mlflow.sklearn方法的具體用法?Python mlflow.sklearn怎麽用?Python mlflow.sklearn使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mlflow
的用法示例。
在下文中一共展示了mlflow.sklearn方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: fit
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import sklearn [as 別名]
def fit(self):
"""
Gets data and preprocess by prepare_data() function
Trains with the selected parameters from grid search and saves the model
"""
data = self.get_input()
df_train, df_test = self.prepare_data(data)
xtr, ytr = df_train.drop(['Value'], axis=1), df_train['Value'].values
xgbtrain = xgb.DMatrix(xtr, ytr)
reg_cv = self.grid_search(xtr, ytr)
param = reg_cv.best_params_
bst = xgb.train(dtrain=xgbtrain, params=param)
# save model to file
mlflow.sklearn.save_model(bst, "model")
return df_test
示例2: predict
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import sklearn [as 別名]
def predict(self, df_test):
"""
Makes prediction for the next 7 days electricity consumption.
"""
# load model from file
loaded_model = mlflow.sklearn.load_model("model")
# make predictions for test data
xts, yts = df_test.drop(['Value'], axis=1), df_test['Value'].values
p = loaded_model.predict(xgb.DMatrix(xts))
prediction = pd.DataFrame({'Prediction': p})
mape, rmse, mae, r2 = ForecastRunner.evaluation_metrics(yts, p)
print('MAPE: {}'.format(mape))
print('RMSE: {}'.format(rmse))
print('R2: {}'.format(r2))
print('MAE: {}'.format(mae))
mlflow.log_metric("MAPE", mape)
mlflow.log_metric("RMSE", rmse)
mlflow.log_metric("R2", r2)
mlflow.log_metric("MAE", mae)
ForecastRunner.plot_result(yts, p)
self.save_output(df_test, prediction)
示例3: get_default_conda_env
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import sklearn [as 別名]
def get_default_conda_env(include_cloudpickle=False):
"""
:return: The default Conda environment for MLflow Models produced by calls to
:func:`save_model()` and :func:`log_model()`.
"""
import sklearn
pip_deps = None
if include_cloudpickle:
import cloudpickle
pip_deps = ["cloudpickle=={}".format(cloudpickle.__version__)]
return _mlflow_conda_env(
additional_conda_deps=[
"scikit-learn={}".format(sklearn.__version__),
],
additional_pip_deps=pip_deps,
additional_conda_channels=None
)
示例4: _save_model
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import sklearn [as 別名]
def _save_model(sk_model, output_path, serialization_format):
"""
:param sk_model: The scikit-learn model to serialize.
:param output_path: The file path to which to write the serialized model.
:param serialization_format: The format in which to serialize the model. This should be one of
the following: ``mlflow.sklearn.SERIALIZATION_FORMAT_PICKLE`` or
``mlflow.sklearn.SERIALIZATION_FORMAT_CLOUDPICKLE``.
"""
with open(output_path, "wb") as out:
if serialization_format == SERIALIZATION_FORMAT_PICKLE:
pickle.dump(sk_model, out)
elif serialization_format == SERIALIZATION_FORMAT_CLOUDPICKLE:
import cloudpickle
cloudpickle.dump(sk_model, out)
else:
raise MlflowException(
message="Unrecognized serialization format: {serialization_format}".format(
serialization_format=serialization_format),
error_code=INTERNAL_ERROR)
示例5: test_build_image_registers_model_and_creates_image_with_specified_names
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import sklearn [as 別名]
def test_build_image_registers_model_and_creates_image_with_specified_names(
sklearn_model, model_path):
mlflow.sklearn.save_model(sk_model=sklearn_model, path=model_path)
with AzureMLMocks() as aml_mocks:
workspace = get_azure_workspace()
model_name = "MODEL_NAME_1"
image_name = "IMAGE_NAME_1"
mlflow.azureml.build_image(
model_uri=model_path, workspace=workspace, model_name=model_name,
image_name=image_name)
register_model_call_args = aml_mocks["register_model"].call_args_list
assert len(register_model_call_args) == 1
_, register_model_call_kwargs = register_model_call_args[0]
assert register_model_call_kwargs["model_name"] == model_name
create_image_call_args = aml_mocks["create_image"].call_args_list
assert len(create_image_call_args) == 1
_, create_image_call_kwargs = create_image_call_args[0]
assert create_image_call_kwargs["name"] == image_name
示例6: test_build_image_generates_model_and_image_names_meeting_azureml_resource_naming_requirements
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import sklearn [as 別名]
def test_build_image_generates_model_and_image_names_meeting_azureml_resource_naming_requirements(
sklearn_model, model_path):
aml_resource_name_max_length = 32
mlflow.sklearn.save_model(sk_model=sklearn_model, path=model_path)
with AzureMLMocks() as aml_mocks:
workspace = get_azure_workspace()
mlflow.azureml.build_image(model_uri=model_path, workspace=workspace)
register_model_call_args = aml_mocks["register_model"].call_args_list
assert len(register_model_call_args) == 1
_, register_model_call_kwargs = register_model_call_args[0]
called_model_name = register_model_call_kwargs["model_name"]
assert len(called_model_name) <= aml_resource_name_max_length
create_image_call_args = aml_mocks["create_image"].call_args_list
assert len(create_image_call_args) == 1
_, create_image_call_kwargs = create_image_call_args[0]
called_image_name = create_image_call_kwargs["name"]
assert len(called_image_name) <= aml_resource_name_max_length
示例7: test_build_image_includes_user_specified_tags_in_azure_image_and_model_tags
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import sklearn [as 別名]
def test_build_image_includes_user_specified_tags_in_azure_image_and_model_tags(
sklearn_model, model_path):
custom_tags = {
"User": "Corey",
"Date": "Today",
"Other": "Entry",
}
mlflow.sklearn.save_model(sk_model=sklearn_model, path=model_path)
with AzureMLMocks() as aml_mocks:
workspace = get_azure_workspace()
mlflow.azureml.build_image(model_uri=model_path, workspace=workspace, tags=custom_tags)
register_model_call_args = aml_mocks["register_model"].call_args_list
assert len(register_model_call_args) == 1
_, register_model_call_kwargs = register_model_call_args[0]
called_tags = register_model_call_kwargs["tags"]
assert custom_tags.items() <= called_tags.items()
create_image_call_args = aml_mocks["create_image"].call_args_list
assert len(create_image_call_args) == 1
_, create_image_call_kwargs = create_image_call_args[0]
image_config = create_image_call_kwargs["image_config"]
assert custom_tags.items() <= image_config.tags.items()
示例8: test_build_image_includes_user_specified_description_in_azure_image_and_model_tags
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import sklearn [as 別名]
def test_build_image_includes_user_specified_description_in_azure_image_and_model_tags(
sklearn_model, model_path):
custom_description = "a custom description"
mlflow.sklearn.save_model(sk_model=sklearn_model, path=model_path)
with AzureMLMocks() as aml_mocks:
workspace = get_azure_workspace()
mlflow.azureml.build_image(
model_uri=model_path, workspace=workspace, description=custom_description)
register_model_call_args = aml_mocks["register_model"].call_args_list
assert len(register_model_call_args) == 1
_, register_model_call_kwargs = register_model_call_args[0]
assert register_model_call_kwargs["description"] == custom_description
create_image_call_args = aml_mocks["create_image"].call_args_list
assert len(create_image_call_args) == 1
_, create_image_call_kwargs = create_image_call_args[0]
image_config = create_image_call_kwargs["image_config"]
assert image_config.description == custom_description
示例9: test_cli_build_image_with_absolute_model_path_calls_expected_azure_routines
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import sklearn [as 別名]
def test_cli_build_image_with_absolute_model_path_calls_expected_azure_routines(
sklearn_model, model_path):
mlflow.sklearn.save_model(sk_model=sklearn_model, path=model_path)
with AzureMLMocks() as aml_mocks:
result = CliRunner(env={"LC_ALL": "en_US.UTF-8", "LANG": "en_US.UTF-8"}).invoke(
mlflow.azureml.cli.commands,
[
'build-image',
'-m', model_path,
'-w', "test_workspace",
'-i', "image_name",
'-n', "model_name",
])
assert result.exit_code == 0
assert aml_mocks["register_model"].call_count == 1
assert aml_mocks["create_image"].call_count == 1
assert aml_mocks["load_workspace"].call_count == 1
示例10: test_cli_build_image_with_relative_model_path_calls_expected_azure_routines
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import sklearn [as 別名]
def test_cli_build_image_with_relative_model_path_calls_expected_azure_routines(sklearn_model):
with TempDir(chdr=True):
model_path = "model"
mlflow.sklearn.save_model(sk_model=sklearn_model, path=model_path)
with AzureMLMocks() as aml_mocks:
result = CliRunner(env={"LC_ALL": "en_US.UTF-8", "LANG": "en_US.UTF-8"}).invoke(
mlflow.azureml.cli.commands,
[
'build-image',
'-m', model_path,
'-w', 'test_workspace',
'-i', 'image_name',
'-n', 'model_name',
])
assert result.exit_code == 0
assert aml_mocks["register_model"].call_count == 1
assert aml_mocks["create_image"].call_count == 1
assert aml_mocks["load_workspace"].call_count == 1
示例11: test_cli_build_image_with_runs_uri_calls_expected_azure_routines
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import sklearn [as 別名]
def test_cli_build_image_with_runs_uri_calls_expected_azure_routines(sklearn_model):
artifact_path = "model"
with mlflow.start_run():
mlflow.sklearn.log_model(sk_model=sklearn_model, artifact_path=artifact_path)
run_id = mlflow.active_run().info.run_id
model_uri = "runs:/{run_id}/{artifact_path}".format(
run_id=run_id, artifact_path=artifact_path)
with AzureMLMocks() as aml_mocks:
result = CliRunner(env={"LC_ALL": "en_US.UTF-8", "LANG": "en_US.UTF-8"}).invoke(
mlflow.azureml.cli.commands,
[
'build-image',
'-m', model_uri,
'-w', 'test_workspace',
'-i', 'image_name',
'-n', 'model_name',
])
assert result.exit_code == 0
assert aml_mocks["register_model"].call_count == 1
assert aml_mocks["create_image"].call_count == 1
assert aml_mocks["load_workspace"].call_count == 1
示例12: test_cli_build_image_with_remote_uri_calls_expected_azure_routines
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import sklearn [as 別名]
def test_cli_build_image_with_remote_uri_calls_expected_azure_routines(
sklearn_model, model_path, mock_s3_bucket):
mlflow.sklearn.save_model(sk_model=sklearn_model, path=model_path)
artifact_path = "model"
artifact_root = "s3://{bucket_name}".format(bucket_name=mock_s3_bucket)
s3_artifact_repo = S3ArtifactRepository(artifact_root)
s3_artifact_repo.log_artifacts(model_path, artifact_path=artifact_path)
model_uri = artifact_root + "/" + artifact_path
with AzureMLMocks() as aml_mocks:
result = CliRunner(env={"LC_ALL": "en_US.UTF-8", "LANG": "en_US.UTF-8"}).invoke(
mlflow.azureml.cli.commands,
[
'build-image',
'-m', model_uri,
'-w', 'test_workspace',
'-i', 'image_name',
'-n', 'model_name',
])
assert result.exit_code == 0
assert aml_mocks["register_model"].call_count == 1
assert aml_mocks["create_image"].call_count == 1
assert aml_mocks["load_workspace"].call_count == 1
示例13: test_deploy_registers_model_and_creates_service_with_specified_names
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import sklearn [as 別名]
def test_deploy_registers_model_and_creates_service_with_specified_names(
sklearn_model, model_path):
mlflow.sklearn.save_model(sk_model=sklearn_model, path=model_path)
with AzureMLMocks() as aml_mocks:
workspace = get_azure_workspace()
model_name = "MODEL_NAME_1"
service_name = "service_name_1"
mlflow.azureml.deploy(
model_uri=model_path, workspace=workspace, model_name=model_name,
service_name=service_name)
register_model_call_args = aml_mocks["register_model"].call_args_list
assert len(register_model_call_args) == 1
_, register_model_call_kwargs = register_model_call_args[0]
assert register_model_call_kwargs["model_name"] == model_name
model_deploy_call_args = aml_mocks["model_deploy"].call_args_list
assert len(model_deploy_call_args) == 1
_, model_deploy_call_kwargs = model_deploy_call_args[0]
assert model_deploy_call_kwargs["name"] == service_name
示例14: test_deploy_generates_model_and_service_names_meeting_azureml_resource_naming_requirements
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import sklearn [as 別名]
def test_deploy_generates_model_and_service_names_meeting_azureml_resource_naming_requirements(
sklearn_model, model_path):
aml_resource_name_max_length = 32
mlflow.sklearn.save_model(sk_model=sklearn_model, path=model_path)
with AzureMLMocks() as aml_mocks:
workspace = get_azure_workspace()
mlflow.azureml.deploy(model_uri=model_path, workspace=workspace)
register_model_call_args = aml_mocks["register_model"].call_args_list
assert len(register_model_call_args) == 1
_, register_model_call_kwargs = register_model_call_args[0]
called_model_name = register_model_call_kwargs["model_name"]
assert len(called_model_name) <= aml_resource_name_max_length
model_deploy_call_args = aml_mocks["model_deploy"].call_args_list
assert len(model_deploy_call_args) == 1
_, model_deploy_call_kwargs = model_deploy_call_args[0]
called_service_name = model_deploy_call_kwargs["name"]
assert len(called_service_name) <= aml_resource_name_max_length
示例15: test_prepare_env_fails
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import sklearn [as 別名]
def test_prepare_env_fails(sk_model):
if no_conda:
pytest.skip("This test requires conda.")
with TempDir(chdr=True):
with mlflow.start_run() as active_run:
mlflow.sklearn.log_model(sk_model, "model",
conda_env={"dependencies": ["mlflow-does-not-exist-dep==abc"]})
model_uri = "runs:/{run_id}/model".format(run_id=active_run.info.run_id)
# Test with no conda
p = subprocess.Popen(["mlflow", "models", "prepare-env", "-m", model_uri,
"--no-conda"])
assert p.wait() == 0
# With conda - should fail due to bad conda environment.
p = subprocess.Popen(["mlflow", "models", "prepare-env", "-m", model_uri])
assert p.wait() != 0