本文整理匯總了Python中mlflow.set_tracking_uri方法的典型用法代碼示例。如果您正苦於以下問題:Python mlflow.set_tracking_uri方法的具體用法?Python mlflow.set_tracking_uri怎麽用?Python mlflow.set_tracking_uri使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mlflow
的用法示例。
在下文中一共展示了mlflow.set_tracking_uri方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: create_new_or_continue_experiment
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_tracking_uri [as 別名]
def create_new_or_continue_experiment(project_dir: str):
"""
Creates a new experiment or continues already existing one.
Experiment name is the name of the project_dir
Parameters
----------
project_dir
project directory
"""
mlflow.set_tracking_uri(None)
experiment_name = project_utils.get_project_name_from_directory(project_dir)
if "MLFLOW_TRACKING_URI" not in os.environ:
tracking_uri = os.path.join(os.path.split(project_dir)[0], "mlruns")
tracking_uri = os.path.realpath(tracking_uri)
mlflow.set_tracking_uri(tracking_uri)
mlflow.set_experiment(experiment_name)
示例2: test_mlflow_context_log_metadata
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_tracking_uri [as 別名]
def test_mlflow_context_log_metadata(MockClient, tmpdir, metadata):
"""
Test that call to wrapped function initiates MLflow logging or throws warning
"""
metadata = Machine(**metadata)
mlflow.set_tracking_uri(f"file:{tmpdir}")
mock_client = MockClient()
mock_client.log_batch.return_value = "test"
# Function with a metadata dict returned
with mlu.mlflow_context("returns metadata", "unique_key", {}, {}) as (
mlflow_client,
run_id,
):
mlu.log_machine(mlflow_client, run_id, metadata)
assert mock_client.log_batch.called
示例3: test_docker_project_tracking_uri_propagation
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_tracking_uri [as 別名]
def test_docker_project_tracking_uri_propagation(
ProfileConfigProvider, tmpdir, tracking_uri,
expected_command_segment, docker_example_base_image): # pylint: disable=unused-argument
mock_provider = mock.MagicMock()
mock_provider.get_config.return_value = \
DatabricksConfig("host", "user", "pass", None, insecure=True)
ProfileConfigProvider.return_value = mock_provider
# Create and mock local tracking directory
local_tracking_dir = os.path.join(tmpdir.strpath, "mlruns")
if tracking_uri is None:
tracking_uri = local_tracking_dir
old_uri = mlflow.get_tracking_uri()
try:
mlflow.set_tracking_uri(tracking_uri)
with mock.patch("mlflow.tracking._tracking_service.utils._get_store") as _get_store_mock:
_get_store_mock.return_value = file_store.FileStore(local_tracking_dir)
mlflow.projects.run(
TEST_DOCKER_PROJECT_DIR, experiment_id=file_store.FileStore.DEFAULT_EXPERIMENT_ID)
finally:
mlflow.set_tracking_uri(old_uri)
示例4: test_model_log
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_tracking_uri [as 別名]
def test_model_log(h2o_iris_model):
h2o_model = h2o_iris_model.model
old_uri = mlflow.get_tracking_uri()
# should_start_run tests whether or not calling log_model() automatically starts a run.
for should_start_run in [False, True]:
with TempDir(chdr=True, remove_on_exit=True):
try:
artifact_path = "gbm_model"
mlflow.set_tracking_uri("test")
if should_start_run:
mlflow.start_run()
mlflow.h2o.log_model(h2o_model=h2o_model, artifact_path=artifact_path)
model_uri = "runs:/{run_id}/{artifact_path}".format(
run_id=mlflow.active_run().info.run_id,
artifact_path=artifact_path)
# Load model
h2o_model_loaded = mlflow.h2o.load_model(model_uri=model_uri)
assert all(
h2o_model_loaded.predict(h2o_iris_model.inference_data).as_data_frame() ==
h2o_model.predict(h2o_iris_model.inference_data).as_data_frame())
finally:
mlflow.end_run()
mlflow.set_tracking_uri(old_uri)
示例5: test_upload_as_model
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_tracking_uri [as 別名]
def test_upload_as_model(self, iris, tabular_explainer, tracking_uri):
mlflow.set_tracking_uri(tracking_uri)
x_train = iris[DatasetConstants.X_TRAIN]
x_test = iris[DatasetConstants.X_TEST]
y_train = iris[DatasetConstants.Y_TRAIN]
model = create_sklearn_random_forest_classifier(x_train, y_train)
explainer = tabular_explainer(model, x_train)
global_explanation = explainer.explain_global(x_test)
mlflow.set_experiment(TEST_EXPERIMENT)
with mlflow.start_run() as run:
log_explanation(TEST_EXPLANATION, global_explanation)
os.makedirs(TEST_DOWNLOAD, exist_ok=True)
run_id = run.info.run_id
downloaded_explanation_mlflow = get_explanation(run_id, TEST_EXPLANATION)
_assert_explanation_equivalence(global_explanation, downloaded_explanation_mlflow)
示例6: test_upload_two_explanations
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_tracking_uri [as 別名]
def test_upload_two_explanations(self, iris, tabular_explainer, tracking_uri):
mlflow.set_tracking_uri(tracking_uri)
x_train = iris[DatasetConstants.X_TRAIN]
x_test = iris[DatasetConstants.X_TEST]
y_train = iris[DatasetConstants.Y_TRAIN]
model = create_sklearn_random_forest_classifier(x_train, y_train)
explainer = tabular_explainer(model, x_train)
global_explanation = explainer.explain_global(x_test)
local_explanation = explainer.explain_local(x_test)
mlflow.set_experiment(TEST_EXPERIMENT)
with mlflow.start_run() as run:
log_explanation('global_explanation', global_explanation)
log_explanation('local_explanation', local_explanation)
os.makedirs(TEST_DOWNLOAD, exist_ok=True)
run_id = run.info.run_id
downloaded_explanation_mlflow = get_explanation(run_id, 'global_explanation')
_assert_explanation_equivalence(global_explanation, downloaded_explanation_mlflow)
示例7: init_experiment
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_tracking_uri [as 別名]
def init_experiment(self, experiment_name, run_name=None, nested=True):
try:
mlflow.set_tracking_uri(self.tracking_uri)
mlflow.set_experiment(experiment_name)
mlflow.start_run(run_name=run_name, nested=nested)
except ConnectionError:
raise Exception(
f"MLFlow cannot connect to the remote server at {self.tracking_uri}.\n"
f"MLFlow also supports logging runs locally to files. Set the MLFlowLogger "
f"tracking_uri to an empty string to use that."
)
示例8: setUp
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_tracking_uri [as 別名]
def setUp(self):
TestCaseWithReset.setUp(self)
TestCaseWithTempDir.setUp(self)
if "MLFLOW_TRACKING_URI" in os.environ:
del os.environ["MLFLOW_TRACKING_URI"]
mlflow.set_tracking_uri(None)
示例9: configure
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_tracking_uri [as 別名]
def configure(
self,
run_uuid,
experiment_name,
tracking_uri,
run_name=None,
always_log_artifacts=False,
create_run=True,
create_experiment=True,
nest_run=True,
):
if mlflow.active_run() and not nest_run:
logger.info('Ending previous MLFlow run: {}.'.format(self.run_uuid))
mlflow.end_run()
self.always_log_artifacts = always_log_artifacts
self._experiment_name = experiment_name
self._run_name = run_name
# MLflow specific
if tracking_uri:
mlflow.set_tracking_uri(tracking_uri)
if run_uuid:
existing_run = MlflowClient().get_run(run_uuid)
if not existing_run and not create_run:
raise FileNotFoundError(
'Run ID {} not found under {}'.format(
run_uuid, mlflow.get_tracking_uri()
)
)
experiment_id = self._retrieve_mlflow_experiment_id(
experiment_name, create=create_experiment
)
return mlflow.start_run(
run_uuid,
experiment_id=experiment_id,
run_name=run_name,
nested=nest_run,
)
示例10: runner
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_tracking_uri [as 別名]
def runner(tmpdir):
mlflow.set_tracking_uri(f"file:{tmpdir}")
yield CliRunner()
示例11: mlflow_context
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_tracking_uri [as 別名]
def mlflow_context(
name: str,
model_key: str = uuid4().hex,
workspace_kwargs: dict = {},
service_principal_kwargs: dict = {},
):
"""
Generate MLflow logger function with either a local or AzureML backend
Parameters
----------
name: str
The name of the log group to log to (e.g. a model name).
model_key: str
Unique ID of logging run.
workspace_kwargs: dict
AzureML Workspace configuration to use for remote MLFlow tracking. See
:func:`gordo.builder.mlflow_utils.get_mlflow_client`.
service_principal_kwargs: dict
AzureML ServicePrincipalAuthentication keyword arguments. See
:func:`gordo.builder.mlflow_utils.get_mlflow_client`
Example
-------
>>> with tempfile.TemporaryDirectory as tmp_dir:
... mlflow.set_tracking_uri(f"file:{tmp_dir}")
... with mlflow_context("log_group", "unique_key", {}, {}) as (mlflow_client, run_id):
... log_machine(machine) # doctest: +SKIP
"""
mlflow_client = get_mlflow_client(workspace_kwargs, service_principal_kwargs)
run_id = get_run_id(mlflow_client, experiment_name=name, model_key=model_key)
logger.info(
f"MLflow client configured to use {'AzureML' if workspace_kwargs else 'local backend'}"
)
yield mlflow_client, run_id
mlflow_client.set_terminated(run_id)
示例12: start
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_tracking_uri [as 別名]
def start(self):
"""Start the whole thing"""
self._setup_logging()
if self.generate_config:
self.write_config()
#
# Setup mlflow
#
import mlflow
mlflow.set_tracking_uri(self.mlflow_server)
experiment_id = mlflow.set_experiment(self.name)
#
# Run the script under mlflow
#
with mlflow.start_run(experiment_id=experiment_id):
#
# Log the run parametres to mlflow.
#
mlflow.log_param("results_path", self.results_path)
cls = self.__class__
for k, trait in sorted(cls.class_own_traits(config=True).items()):
mlflow.log_param(trait.name, repr(trait.get(self)))
self.run()
示例13: tracking_uri_mock
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_tracking_uri [as 別名]
def tracking_uri_mock(tmpdir, request):
try:
if 'notrackingurimock' not in request.keywords:
tracking_uri = path_to_local_sqlite_uri(
os.path.join(tmpdir.strpath, 'mlruns'))
mlflow.set_tracking_uri(tracking_uri)
os.environ["MLFLOW_TRACKING_URI"] = tracking_uri
yield tmpdir
finally:
mlflow.set_tracking_uri(None)
if 'notrackingurimock' not in request.keywords:
del os.environ["MLFLOW_TRACKING_URI"]
示例14: test_get_tracking_uri_for_run
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_tracking_uri [as 別名]
def test_get_tracking_uri_for_run():
mlflow.set_tracking_uri("http://some-uri")
assert databricks._get_tracking_uri_for_run() == "http://some-uri"
mlflow.set_tracking_uri("databricks://profile")
assert databricks._get_tracking_uri_for_run() == "databricks"
mlflow.set_tracking_uri(None)
with mock.patch.dict(os.environ, {mlflow.tracking._TRACKING_URI_ENV_VAR: "http://some-uri"}):
assert mlflow.tracking._tracking_service.utils.get_tracking_uri() == "http://some-uri"
示例15: test_sparkml_model_log
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_tracking_uri [as 別名]
def test_sparkml_model_log(tmpdir, spark_model_iris):
# Print the coefficients and intercept for multinomial logistic regression
old_tracking_uri = mlflow.get_tracking_uri()
cnt = 0
# should_start_run tests whether or not calling log_model() automatically starts a run.
for should_start_run in [False, True]:
for dfs_tmp_dir in [None, os.path.join(str(tmpdir), "test")]:
print("should_start_run =", should_start_run, "dfs_tmp_dir =", dfs_tmp_dir)
try:
tracking_dir = os.path.abspath(str(tmpdir.join("mlruns")))
mlflow.set_tracking_uri("file://%s" % tracking_dir)
if should_start_run:
mlflow.start_run()
artifact_path = "model%d" % cnt
cnt += 1
sparkm.log_model(artifact_path=artifact_path, spark_model=spark_model_iris.model,
dfs_tmpdir=dfs_tmp_dir)
model_uri = "runs:/{run_id}/{artifact_path}".format(
run_id=mlflow.active_run().info.run_id,
artifact_path=artifact_path)
# test reloaded model
reloaded_model = sparkm.load_model(model_uri=model_uri, dfs_tmpdir=dfs_tmp_dir)
preds_df = reloaded_model.transform(spark_model_iris.spark_df)
preds = [x.prediction for x in preds_df.select("prediction").collect()]
assert spark_model_iris.predictions == preds
finally:
mlflow.end_run()
mlflow.set_tracking_uri(old_tracking_uri)
x = dfs_tmp_dir or sparkm.DFS_TMP
shutil.rmtree(x)
shutil.rmtree(tracking_dir)