本文整理匯總了Python中mlflow.set_experiment方法的典型用法代碼示例。如果您正苦於以下問題:Python mlflow.set_experiment方法的具體用法?Python mlflow.set_experiment怎麽用?Python mlflow.set_experiment使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mlflow
的用法示例。
在下文中一共展示了mlflow.set_experiment方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: create_new_or_continue_experiment
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_experiment [as 別名]
def create_new_or_continue_experiment(project_dir: str):
"""
Creates a new experiment or continues already existing one.
Experiment name is the name of the project_dir
Parameters
----------
project_dir
project directory
"""
mlflow.set_tracking_uri(None)
experiment_name = project_utils.get_project_name_from_directory(project_dir)
if "MLFLOW_TRACKING_URI" not in os.environ:
tracking_uri = os.path.join(os.path.split(project_dir)[0], "mlruns")
tracking_uri = os.path.realpath(tracking_uri)
mlflow.set_tracking_uri(tracking_uri)
mlflow.set_experiment(experiment_name)
示例2: test_set_experiment
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_experiment [as 別名]
def test_set_experiment():
with pytest.raises(TypeError):
mlflow.set_experiment() # pylint: disable=no-value-for-parameter
with pytest.raises(Exception):
mlflow.set_experiment(None)
with pytest.raises(Exception):
mlflow.set_experiment("")
name = "random_exp"
exp_id = mlflow.create_experiment(name)
mlflow.set_experiment(name)
with start_run() as run:
assert run.info.experiment_id == exp_id
another_name = "another_experiment"
mlflow.set_experiment(another_name)
exp_id2 = mlflow.tracking.MlflowClient().get_experiment_by_name(another_name)
with start_run() as another_run:
assert another_run.info.experiment_id == exp_id2.experiment_id
示例3: test_upload_as_model
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_experiment [as 別名]
def test_upload_as_model(self, iris, tabular_explainer, tracking_uri):
mlflow.set_tracking_uri(tracking_uri)
x_train = iris[DatasetConstants.X_TRAIN]
x_test = iris[DatasetConstants.X_TEST]
y_train = iris[DatasetConstants.Y_TRAIN]
model = create_sklearn_random_forest_classifier(x_train, y_train)
explainer = tabular_explainer(model, x_train)
global_explanation = explainer.explain_global(x_test)
mlflow.set_experiment(TEST_EXPERIMENT)
with mlflow.start_run() as run:
log_explanation(TEST_EXPLANATION, global_explanation)
os.makedirs(TEST_DOWNLOAD, exist_ok=True)
run_id = run.info.run_id
downloaded_explanation_mlflow = get_explanation(run_id, TEST_EXPLANATION)
_assert_explanation_equivalence(global_explanation, downloaded_explanation_mlflow)
示例4: test_upload_two_explanations
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_experiment [as 別名]
def test_upload_two_explanations(self, iris, tabular_explainer, tracking_uri):
mlflow.set_tracking_uri(tracking_uri)
x_train = iris[DatasetConstants.X_TRAIN]
x_test = iris[DatasetConstants.X_TEST]
y_train = iris[DatasetConstants.Y_TRAIN]
model = create_sklearn_random_forest_classifier(x_train, y_train)
explainer = tabular_explainer(model, x_train)
global_explanation = explainer.explain_global(x_test)
local_explanation = explainer.explain_local(x_test)
mlflow.set_experiment(TEST_EXPERIMENT)
with mlflow.start_run() as run:
log_explanation('global_explanation', global_explanation)
log_explanation('local_explanation', local_explanation)
os.makedirs(TEST_DOWNLOAD, exist_ok=True)
run_id = run.info.run_id
downloaded_explanation_mlflow = get_explanation(run_id, 'global_explanation')
_assert_explanation_equivalence(global_explanation, downloaded_explanation_mlflow)
示例5: init_experiment
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_experiment [as 別名]
def init_experiment(self, experiment_name, run_name=None, nested=True):
try:
mlflow.set_tracking_uri(self.tracking_uri)
mlflow.set_experiment(experiment_name)
mlflow.start_run(run_name=run_name, nested=nested)
except ConnectionError:
raise Exception(
f"MLFlow cannot connect to the remote server at {self.tracking_uri}.\n"
f"MLFlow also supports logging runs locally to files. Set the MLFlowLogger "
f"tracking_uri to an empty string to use that."
)
示例6: start
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_experiment [as 別名]
def start(self):
"""Start the whole thing"""
self._setup_logging()
if self.generate_config:
self.write_config()
#
# Setup mlflow
#
import mlflow
mlflow.set_tracking_uri(self.mlflow_server)
experiment_id = mlflow.set_experiment(self.name)
#
# Run the script under mlflow
#
with mlflow.start_run(experiment_id=experiment_id):
#
# Log the run parametres to mlflow.
#
mlflow.log_param("results_path", self.results_path)
cls = self.__class__
for k, trait in sorted(cls.class_own_traits(config=True).items()):
mlflow.log_param(trait.name, repr(trait.get(self)))
self.run()
示例7: test_set_experiment_with_deleted_experiment_name
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_experiment [as 別名]
def test_set_experiment_with_deleted_experiment_name():
name = "dead_exp"
mlflow.set_experiment(name)
with start_run() as run:
exp_id = run.info.experiment_id
tracking.MlflowClient().delete_experiment(exp_id)
with pytest.raises(MlflowException):
mlflow.set_experiment(name)
示例8: test_set_experiment_with_zero_id
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_experiment [as 別名]
def test_set_experiment_with_zero_id(reset_mock):
reset_mock(MlflowClient, "get_experiment_by_name",
mock.Mock(return_value=attrdict.AttrDict(
experiment_id=0,
lifecycle_stage=LifecycleStage.ACTIVE)))
reset_mock(MlflowClient, "create_experiment", mock.Mock())
mlflow.set_experiment("my_exp")
MlflowClient.get_experiment_by_name.assert_called_once()
MlflowClient.create_experiment.assert_not_called()
示例9: test_start_run_exp_id_0
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_experiment [as 別名]
def test_start_run_exp_id_0():
mlflow.set_experiment("some-experiment")
# Create a run and verify that the current active experiment is the one we just set
with mlflow.start_run() as active_run:
exp_id = active_run.info.experiment_id
assert exp_id != FileStore.DEFAULT_EXPERIMENT_ID
assert MlflowClient().get_experiment(exp_id).name == "some-experiment"
# Set experiment ID to 0 when creating a run, verify that the specified experiment ID is honored
with mlflow.start_run(experiment_id=0) as active_run:
assert active_run.info.experiment_id == FileStore.DEFAULT_EXPERIMENT_ID
示例10: test_get_artifact_uri_appends_to_uri_path_component_correctly
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_experiment [as 別名]
def test_get_artifact_uri_appends_to_uri_path_component_correctly(
artifact_location, expected_uri_format):
client = MlflowClient()
client.create_experiment("get-artifact-uri-test", artifact_location=artifact_location)
mlflow.set_experiment("get-artifact-uri-test")
with mlflow.start_run():
run_id = mlflow.active_run().info.run_id
for artifact_path in ["path/to/artifact", "/artifact/path", "arty.txt"]:
artifact_uri = mlflow.get_artifact_uri(artifact_path)
assert artifact_uri == tracking.artifact_utils.get_artifact_uri(run_id, artifact_path)
assert artifact_uri == expected_uri_format.format(
run_id=run_id, path=artifact_path.lstrip("/"))
示例11: test_get_experiment_id_in_databricks_with_active_experiment_returns_active_experiment_id
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_experiment [as 別名]
def test_get_experiment_id_in_databricks_with_active_experiment_returns_active_experiment_id():
with TempDir(chdr=True):
exp_name = "random experiment %d" % random.randint(1, 1e6)
exp_id = mlflow.create_experiment(exp_name)
mlflow.set_experiment(exp_name)
notebook_id = str(int(exp_id) + 73)
with mock.patch("mlflow.tracking.fluent.is_in_databricks_notebook") as notebook_detection_mock,\
mock.patch("mlflow.tracking.fluent.get_notebook_id") as notebook_id_mock:
notebook_detection_mock.return_value = True
notebook_id_mock.return_value = notebook_id
assert _get_experiment_id() != notebook_id
assert _get_experiment_id() == exp_id
示例12: test_start_run_existing_run_from_environment_with_set_environment
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_experiment [as 別名]
def test_start_run_existing_run_from_environment_with_set_environment(empty_active_run_stack):
mock_run = mock.Mock()
mock_run.info.lifecycle_stage = LifecycleStage.ACTIVE
run_id = uuid.uuid4().hex
env_patch = mock.patch.dict("os.environ", {_RUN_ID_ENV_VAR: run_id})
with env_patch, mock.patch.object(MlflowClient, "get_run", return_value=mock_run):
with pytest.raises(MlflowException):
set_experiment("test-run")
start_run()
示例13: __call__
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_experiment [as 別名]
def __call__(self, study: optuna.study.Study, trial: optuna.trial.FrozenTrial) -> None:
# This sets the tracking_uri for MLflow.
if self._tracking_uri is not None:
mlflow.set_tracking_uri(self._tracking_uri)
# This sets the experiment of MLflow.
mlflow.set_experiment(study.study_name)
with mlflow.start_run(run_name=str(trial.number)):
# This sets the metric for MLflow.
trial_value = trial.value if trial.value is not None else float("nan")
mlflow.log_metric(self._metric_name, trial_value)
# This sets the params for MLflow.
mlflow.log_params(trial.params)
# This sets the tags for MLflow.
tags = {} # type: Dict[str, str]
tags["number"] = str(trial.number)
tags["datetime_start"] = str(trial.datetime_start)
tags["datetime_complete"] = str(trial.datetime_complete)
# Set state and convert it to str and remove the common prefix.
trial_state = trial.state
if isinstance(trial_state, TrialState):
tags["state"] = str(trial_state).split(".")[-1]
# Set direction and convert it to str and remove the common prefix.
study_direction = study.direction
if isinstance(study_direction, StudyDirection):
tags["direction"] = str(study_direction).split(".")[-1]
tags.update(trial.user_attrs)
distributions = {
(k + "_distribution"): str(v) for (k, v) in trial.distributions.items()
}
tags.update(distributions)
mlflow.set_tags(tags)
示例14: test_dnn
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_experiment [as 別名]
def test_dnn():
old_uri = tracking.get_tracking_uri()
try:
with TempDir(chdr=False, remove_on_exit=True) as tmp:
diamonds = tmp.path("diamonds")
estimator = tmp.path("estimator")
artifacts = tmp.path("artifacts")
os.mkdir(diamonds)
os.mkdir(estimator)
os.mkdir(artifacts)
tracking.set_tracking_uri(artifacts)
mlflow.set_experiment("test-experiment")
# Download the diamonds dataset via mlflow run
run(".", entry_point="main", version=None,
parameters={"dest-dir": diamonds},
mode="local", cluster_spec=None, git_username=None, git_password=None,
use_conda=True, storage_dir=None)
# Run the main dnn app via mlflow
submitted_run = run(
"apps/dnn-regression", entry_point="main", version=None,
parameters={"model-dir": estimator,
"train": os.path.join(diamonds, "train_diamonds.parquet"),
"test": os.path.join(diamonds, "test_diamonds.parquet"),
"hidden-units": "30,30",
"label-col": "price",
"steps": 5000,
"batch-size": 128},
mode="local",
cluster_spec=None, git_username=None, git_password=None, use_conda=True,
storage_dir=None)
# Loading the saved model as a pyfunc.
pyfunc = load_pyfunc("model", submitted_run.run_id)
df = pandas.read_parquet(os.path.join(diamonds, "test_diamonds.parquet"))
predict_df = pyfunc.predict(df)
assert isinstance(predict_df['predictions'][0], numpy.float32)
finally:
tracking.set_tracking_uri(old_uri)
示例15: log_experiment
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import set_experiment [as 別名]
def log_experiment(
params={},
metrics={},
artifacts={},
experiment_name="my_experiment",
mlflow_tracking_uri="./experiments",
mlflow_artifact_location=None,
):
"""
Evaluate the model and log it with mlflow
Args:
params (dict): dictionary of parameters to log
metrics (dict): dictionary of metrics to log
artifacts (dict): dictionary of artifacts (path) to log
experiment_name (str): experiment name
mlflow_tracking_uri (str): path or sql url for mlflow logging
mlflow_artifact_location (str): path or s3bucket url for artifact
logging. If none, it will default to a standard.
Returns:
None
"""
# Try to create an experiment if it doesn't exist
try:
exp_0 = mlflow.create_experiment(
experiment_name, artifact_location=mlflow_artifact_location
)
# set uri
mlflow.set_tracking_uri(mlflow_tracking_uri)
logger.info(f"Created new experiment id: {exp_0}")
except Exception as E:
logger.info(f"{E}. Writing to same URI/artifact store")
# Always set the experiment
mlflow.set_experiment(experiment_name)
logger.info(f"Running experiment {experiment_name}")
with mlflow.start_run():
# param logging
for key, val in params.items():
logger.info(f"Logging param {key}")
mlflow.log_param(key, val)
# metric logging
for key, val in metrics.items():
logger.info(f"Logging metric {key}")
mlflow.log_metric(key, val)
# artifact logging
for key, val in artifacts.items():
logger.info(f"Logging artifact {key}")
mlflow.log_artifact(val)