本文整理匯總了Python中mlflow.log_params方法的典型用法代碼示例。如果您正苦於以下問題:Python mlflow.log_params方法的具體用法?Python mlflow.log_params怎麽用?Python mlflow.log_params使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mlflow
的用法示例。
在下文中一共展示了mlflow.log_params方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: log_params
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_params [as 別名]
def log_params(params: Dict[str, Any]):
mlflow.log_params(params)
示例2: log_params
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_params [as 別名]
def log_params(cls, params):
raise NotImplementedError()
示例3: mlflow_log_pararms
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_params [as 別名]
def mlflow_log_pararms(self, key=None):
mlflow.log_params(self.flatten(key))
return self
示例4: log_fn_args_as_params
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_params [as 別名]
def log_fn_args_as_params(fn, args, kwargs, unlogged=[]): # pylint: disable=W0102
"""
Log parameters explicitly passed to a function.
:param fn: function whose parameters are to be logged
:param args: arguments explicitly passed into fn
:param kwargs: kwargs explicitly passed into fn
:param unlogged: parameters not to be logged
:return: None
"""
# all_default_values has length n, corresponding to values of the
# last n elements in all_param_names
pos_params, _, _, pos_defaults, kw_params, kw_defaults, _ = inspect.getfullargspec(fn)
kw_params = list(kw_params) if kw_params else []
pos_defaults = list(pos_defaults) if pos_defaults else []
all_param_names = pos_params + kw_params
all_default_values = pos_defaults + [kw_defaults[param] for param in kw_params]
# Checking if default values are present for logging. Known bug that getargspec will return an
# empty argspec for certain functions, despite the functions having an argspec.
if all_default_values is not None and len(all_default_values) > 0:
# Logging the default arguments not passed by the user
defaults = get_unspecified_default_args(args, kwargs, all_param_names, all_default_values)
for name in [name for name in defaults.keys() if name in unlogged]:
del defaults[name]
try_mlflow_log(mlflow.log_params, defaults)
# Logging the arguments passed by the user
args_dict = dict((param_name, param_val) for param_name, param_val
in zip(all_param_names, args)
if param_name not in unlogged)
if args_dict:
try_mlflow_log(mlflow.log_params, args_dict)
# Logging the kwargs passed by the user
for param_name in kwargs:
if param_name not in unlogged:
try_mlflow_log(mlflow.log_param, param_name, kwargs[param_name])
示例5: test_log_params
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_params [as 別名]
def test_log_params():
expected_params = {"name_1": "c", "name_2": "b", "nested/nested/name": 5}
with start_run() as active_run:
run_id = active_run.info.run_id
mlflow.log_params(expected_params)
finished_run = tracking.MlflowClient().get_run(run_id)
# Validate params
assert finished_run.data.params == {"name_1": "c", "name_2": "b", "nested/nested/name": "5"}
示例6: mlflow_callback
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_params [as 別名]
def mlflow_callback(study, trial):
trial_value = trial.value if trial.value is not None else float("nan")
with mlflow.start_run(run_name=study.study_name):
mlflow.log_params(trial.params)
mlflow.log_metrics({"mean_squared_error": trial_value})
示例7: __call__
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_params [as 別名]
def __call__(self, study: optuna.study.Study, trial: optuna.trial.FrozenTrial) -> None:
# This sets the tracking_uri for MLflow.
if self._tracking_uri is not None:
mlflow.set_tracking_uri(self._tracking_uri)
# This sets the experiment of MLflow.
mlflow.set_experiment(study.study_name)
with mlflow.start_run(run_name=str(trial.number)):
# This sets the metric for MLflow.
trial_value = trial.value if trial.value is not None else float("nan")
mlflow.log_metric(self._metric_name, trial_value)
# This sets the params for MLflow.
mlflow.log_params(trial.params)
# This sets the tags for MLflow.
tags = {} # type: Dict[str, str]
tags["number"] = str(trial.number)
tags["datetime_start"] = str(trial.datetime_start)
tags["datetime_complete"] = str(trial.datetime_complete)
# Set state and convert it to str and remove the common prefix.
trial_state = trial.state
if isinstance(trial_state, TrialState):
tags["state"] = str(trial_state).split(".")[-1]
# Set direction and convert it to str and remove the common prefix.
study_direction = study.direction
if isinstance(study_direction, StudyDirection):
tags["direction"] = str(study_direction).split(".")[-1]
tags.update(trial.user_attrs)
distributions = {
(k + "_distribution"): str(v) for (k, v) in trial.distributions.items()
}
tags.update(distributions)
mlflow.set_tags(tags)
示例8: _plx_log_params
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_params [as 別名]
def _plx_log_params(params_dict):
from polyaxon_client.tracking import Experiment
plx_exp = Experiment()
plx_exp.log_params(
**{"pytorch version": torch.__version__, "ignite version": ignite.__version__,}
)
plx_exp.log_params(**params_dict)
示例9: _mlflow_log_params
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_params [as 別名]
def _mlflow_log_params(params_dict):
mlflow.log_params(
{"pytorch version": torch.__version__, "ignite version": ignite.__version__,}
)
mlflow.log_params(params_dict)