本文整理匯總了Python中mlflow.log_metrics方法的典型用法代碼示例。如果您正苦於以下問題:Python mlflow.log_metrics方法的具體用法?Python mlflow.log_metrics怎麽用?Python mlflow.log_metrics使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mlflow
的用法示例。
在下文中一共展示了mlflow.log_metrics方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: on_epoch_end
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_metrics [as 別名]
def on_epoch_end(self, epoch, logs=None):
"""
Log Keras metrics with MLflow. If model improved on the validation data, evaluate it on
a test set and store it as the best model.
"""
if not logs:
return
self._next_step = epoch + 1
train_loss = logs["loss"]
val_loss = logs["val_loss"]
mlflow.log_metrics({
self.train_loss: train_loss,
self.val_loss: val_loss
}, step=epoch)
if val_loss < self._best_val_loss:
# The result improved in the validation set.
# Log the model with mlflow and also evaluate and log on test set.
self._best_train_loss = train_loss
self._best_val_loss = val_loss
self._best_model = keras.models.clone_model(self.model)
self._best_model.set_weights([x.copy() for x in self.model.get_weights()])
preds = self._best_model.predict(self._test_x)
eval_and_log_metrics("test", self._test_y, preds, epoch)
示例2: log_metrics
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_metrics [as 別名]
def log_metrics(metrics: Dict[str, Any], step: int = None):
mlflow.log_metrics(metrics, step)
示例3: log_metrics
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_metrics [as 別名]
def log_metrics(cls, metrics, step):
raise NotImplementedError()
示例4: log
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_metrics [as 別名]
def log(self, prefix, step=None, tensorboard=True, mlflow=False):
step = step if step is not None else self.step
if self.tensorboard_path and tensorboard:
for key, value in self.get().items():
self.writers[prefix].add_scalar('metrics/%s' % key, value, global_step=step)
if mlflow:
module_mlflow.log_metrics(self.get(prefix=prefix), step=step)
示例5: on_epoch_end
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_metrics [as 別名]
def on_epoch_end(self, epoch, logs=None):
if (epoch-1) % _LOG_EVERY_N_STEPS == 0:
try_mlflow_log(mlflow.log_metrics, logs, step=epoch)
示例6: main
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_metrics [as 別名]
def main():
# parse command-line arguments
args = parse_args()
# prepare train and test data
iris = datasets.load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
train_set = lgb.Dataset(X_train, label=y_train)
# enable auto logging
mlflow.lightgbm.autolog()
with mlflow.start_run():
# train model
params = {
'objective': 'multiclass',
'num_class': 3,
'learning_rate': args.learning_rate,
'metric': 'multi_logloss',
'colsample_bytree': args.colsample_bytree,
'subsample': args.subsample,
'seed': 42,
}
model = lgb.train(params, train_set, num_boost_round=10,
valid_sets=[train_set], valid_names=['train'])
# evaluate model
y_proba = model.predict(X_test)
y_pred = y_proba.argmax(axis=1)
loss = log_loss(y_test, y_proba)
acc = accuracy_score(y_test, y_pred)
# log metrics
mlflow.log_metrics({'log_loss': loss, 'accuracy': acc})
示例7: main
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_metrics [as 別名]
def main():
# parse command-line arguments
args = parse_args()
# prepare train and test data
iris = datasets.load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
dtrain = xgb.DMatrix(X_train, label=y_train)
dtest = xgb.DMatrix(X_test, label=y_test)
# enable auto logging
mlflow.xgboost.autolog()
with mlflow.start_run():
# train model
params = {
'objective': 'multi:softprob',
'num_class': 3,
'learning_rate': args.learning_rate,
'eval_metric': 'mlogloss',
'colsample_bytree': args.colsample_bytree,
'subsample': args.subsample,
'seed': 42,
}
model = xgb.train(params, dtrain, evals=[(dtrain, 'train')])
# evaluate model
y_proba = model.predict(dtest)
y_pred = y_proba.argmax(axis=1)
loss = log_loss(y_test, y_proba)
acc = accuracy_score(y_test, y_pred)
# log metrics
mlflow.log_metrics({'log_loss': loss, 'accuracy': acc})
示例8: test_log_metrics_uses_millisecond_timestamp_resolution_fluent
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_metrics [as 別名]
def test_log_metrics_uses_millisecond_timestamp_resolution_fluent():
with start_run() as active_run, mock.patch("time.time") as time_mock:
time_mock.side_effect = lambda: 123
mlflow.log_metrics({
"name_1": 25,
"name_2": -3,
})
mlflow.log_metrics({
"name_1": 30,
})
mlflow.log_metrics({
"name_1": 40,
})
run_id = active_run.info.run_id
client = tracking.MlflowClient()
metric_history_name1 = client.get_metric_history(run_id, "name_1")
assert set([(m.value, m.timestamp) for m in metric_history_name1]) == set([
(25, 123 * 1000),
(30, 123 * 1000),
(40, 123 * 1000),
])
metric_history_name2 = client.get_metric_history(run_id, "name_2")
assert set([(m.value, m.timestamp) for m in metric_history_name2]) == set([
(-3, 123 * 1000),
])
示例9: mlflow_callback
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_metrics [as 別名]
def mlflow_callback(study, trial):
trial_value = trial.value if trial.value is not None else float("nan")
with mlflow.start_run(run_name=study.study_name):
mlflow.log_params(trial.params)
mlflow.log_metrics({"mean_squared_error": trial_value})