本文整理匯總了Python中mlflow.log_metric方法的典型用法代碼示例。如果您正苦於以下問題:Python mlflow.log_metric方法的具體用法?Python mlflow.log_metric怎麽用?Python mlflow.log_metric使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mlflow
的用法示例。
在下文中一共展示了mlflow.log_metric方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: predict
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_metric [as 別名]
def predict(self, df_test):
"""
Makes prediction for the next 7 days electricity consumption.
"""
# load model from file
loaded_model = mlflow.sklearn.load_model("model")
# make predictions for test data
xts, yts = df_test.drop(['Value'], axis=1), df_test['Value'].values
p = loaded_model.predict(xgb.DMatrix(xts))
prediction = pd.DataFrame({'Prediction': p})
mape, rmse, mae, r2 = ForecastRunner.evaluation_metrics(yts, p)
print('MAPE: {}'.format(mape))
print('RMSE: {}'.format(rmse))
print('R2: {}'.format(r2))
print('MAE: {}'.format(mae))
mlflow.log_metric("MAPE", mape)
mlflow.log_metric("RMSE", rmse)
mlflow.log_metric("R2", r2)
mlflow.log_metric("MAE", mae)
ForecastRunner.plot_result(yts, p)
self.save_output(df_test, prediction)
示例2: log_metric
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_metric [as 別名]
def log_metric(self, name: str, score: float):
"""
Log a metric under the logging directory.
Args:
name:
Metric name.
score:
Metric value.
"""
name = _sanitize(name)
score = _sanitize(score)
self.metrics[name] = score
if self.with_mlflow:
import mlflow
from mlflow.exceptions import MlflowException
try:
mlflow.log_metric(name, score)
except MlflowException as e:
warnings.warn('Error in logging metric {} to mlflow. Skipped. {}'.format(name, e))
示例3: test_ignore_errors_in_mlflow_params
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_metric [as 別名]
def test_ignore_errors_in_mlflow_params(tmpdir_name):
mlflow.start_run()
mlflow.log_param('features', 'ABC')
mlflow.log_metric('Overall', -99)
params = {
'objective': 'binary',
'max_depth': 8
}
X, y = make_classification_df()
result = run_experiment(params, X, y, with_mlflow=True, logging_directory=tmpdir_name, feature_list=[])
client = mlflow.tracking.MlflowClient()
data = client.get_run(mlflow.active_run().info.run_id).data
assert data.metrics['Overall'] == result.metrics[-1]
assert data.params['features'] == 'ABC' # params cannot be overwritten
mlflow.end_run()
示例4: on_epoch_end
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_metric [as 別名]
def on_epoch_end(self, epoch, logs=None):
"""
Log Keras metrics with MLflow. Update the best model if the model improved on the validation
data.
"""
if not logs:
return
for name, value in logs.items():
if name.startswith("val_"):
name = "valid_" + name[4:]
else:
name = "train_" + name
mlflow.log_metric(name, value)
val_loss = logs["val_loss"]
if val_loss < self._best_val_loss:
# Save the "best" weights
self._best_val_loss = val_loss
self._best_weights = [x.copy() for x in self._model.get_weights()]
示例5: test_log_metrics_uses_millisecond_timestamp_resolution_client
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_metric [as 別名]
def test_log_metrics_uses_millisecond_timestamp_resolution_client():
with start_run() as active_run, mock.patch("time.time") as time_mock:
time_mock.side_effect = lambda: 123
mlflow_client = tracking.MlflowClient()
run_id = active_run.info.run_id
mlflow_client.log_metric(run_id=run_id, key="name_1", value=25)
mlflow_client.log_metric(run_id=run_id, key="name_2", value=-3)
mlflow_client.log_metric(run_id=run_id, key="name_1", value=30)
mlflow_client.log_metric(run_id=run_id, key="name_1", value=40)
metric_history_name1 = mlflow_client.get_metric_history(run_id, "name_1")
assert set([(m.value, m.timestamp) for m in metric_history_name1]) == set([
(25, 123 * 1000),
(30, 123 * 1000),
(40, 123 * 1000),
])
metric_history_name2 = mlflow_client.get_metric_history(run_id, "name_2")
assert set([(m.value, m.timestamp) for m in metric_history_name2]) == set([
(-3, 123 * 1000),
])
示例6: log_metric
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_metric [as 別名]
def log_metric(key: str, value: float, step: int = None):
mlflow.log_metric(key, value, step)
示例7: log_scalar
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_metric [as 別名]
def log_scalar(name, value, step):
"""Log a scalar value to both MLflow and TensorBoard"""
writer.add_scalar(name, value, step)
mlflow.log_metric(name, value)
示例8: log_metric
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_metric [as 別名]
def log_metric(key, value):
pass
示例9: log_metrics
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_metric [as 別名]
def log_metrics(self, metrics: Dict):
"""
Log a batch of metrics under the logging directory.
Args:
metrics: dictionary of metrics.
"""
for k, v in metrics.items():
self.log_metric(k, v)
示例10: add_leaderboard_score
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_metric [as 別名]
def add_leaderboard_score(logging_directory: str, score: float):
"""
Record leaderboard score to the existing experiment directory.
Args:
logging_directory:
The directory to be added
score:
Leaderboard score
"""
with Experiment.continue_from(logging_directory) as e:
e.log_metric('LB', score)
示例11: _update
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_metric [as 別名]
def _update(
self,
engine, # type: Engine
attach_id, # type: int
prefix, # type: str
update_period, # type: int
metric_names=None, # type: List
output_transform=None, # type: Callable
param_history=False # type: bool
):
step = self.metrics_step[attach_id]
self.metrics_step[attach_id] += 1
if step % update_period != 0:
return
#
# Get all the metrics
#
metrics = []
if metric_names is not None:
if not all(metric in engine.state.metrics for metric in metric_names):
raise KeyError("metrics not found in engine.state.metrics")
metrics.extend([(name, engine.state.metrics[name]) for name in metric_names])
if output_transform is not None:
output_dict = output_transform(engine.state.output)
if not isinstance(output_dict, dict):
output_dict = {"output": output_dict}
metrics.extend([(name, value) for name, value in output_dict.items()])
if param_history:
metrics.extend([(name, value[-1][0]) for name, value in engine.state.param_history.items()])
if not metrics:
return
for metric_name, new_value in metrics:
mlflow.log_metric(prefix + metric_name, new_value)
示例12: _mlflow_log_metrics
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_metric [as 別名]
def _mlflow_log_metrics(metrics, metric_name):
"""Record metric value during each epoch using the step parameter in
mlflow.log_metric.
:param metrics:
:param metric_name:
:return:
"""
for epoch, metric in enumerate(metrics[metric_name], 1): mlflow.log_metric(
metric_name, metric,
step=epoch)
示例13: on_train_end
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_metric [as 別名]
def on_train_end(self, *args, **kwargs):
"""
Log the best model with MLflow and evaluate it on the train and validation data so that the
metrics stored with MLflow reflect the logged model.
"""
self._model.set_weights(self._best_weights)
x, y = self._train
train_res = self._model.evaluate(x=x, y=y)
for name, value in zip(self._model.metrics_names, train_res):
mlflow.log_metric("train_{}".format(name), value)
x, y = self._valid
valid_res = self._model.evaluate(x=x, y=y)
for name, value in zip(self._model.metrics_names, valid_res):
mlflow.log_metric("valid_{}".format(name), value)
log_model(keras_model=self._model, **self._pyfunc_params)
示例14: on_train_end
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_metric [as 別名]
def on_train_end(self, *args, **kwargs):
"""
Log the best model with MLflow and evaluate it on the train and validation data so that the
metrics stored with MLflow reflect the logged model.
"""
self._model.set_weights(self._best_weights)
x, y = self._train
train_res = self._model.evaluate(x=x, y=y)
for name, value in zip(self._model.metrics_names, train_res):
mlflow.log_metric("train_{}".format(name), value)
x, y = self._valid
valid_res = self._model.evaluate(x=x, y=y)
for name, value in zip(self._model.metrics_names, valid_res):
mlflow.log_metric("valid_{}".format(name), value)
示例15: train_random_forest
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_metric [as 別名]
def train_random_forest(ntrees):
with mlflow.start_run():
rf = H2ORandomForestEstimator(ntrees=ntrees)
train_cols = [n for n in wine.col_names if n != "quality"]
rf.train(train_cols, "quality", training_frame=train, validation_frame=test)
mlflow.log_param("ntrees", ntrees)
mlflow.log_metric("rmse", rf.rmse())
mlflow.log_metric("r2", rf.r2())
mlflow.log_metric("mae", rf.mae())
mlflow.h2o.log_model(rf, "model")