本文整理匯總了Python中mlflow.log_artifact方法的典型用法代碼示例。如果您正苦於以下問題:Python mlflow.log_artifact方法的具體用法?Python mlflow.log_artifact怎麽用?Python mlflow.log_artifact使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mlflow
的用法示例。
在下文中一共展示了mlflow.log_artifact方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: stop
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_artifact [as 別名]
def stop(self):
"""
Stop current experiment.
"""
self._save_dict(self.metrics, 'metrics.json')
self._save_dict(self.params, 'params.json')
if not self.is_custom:
for h in self.logger.handlers:
h.close()
if self.with_mlflow:
import mlflow
from mlflow.exceptions import MlflowException
try:
mlflow.log_artifact(self.log_path)
mlflow.log_artifact(os.path.join(self.logging_directory, 'metrics.json'))
mlflow.log_artifact(os.path.join(self.logging_directory, 'params.json'))
except MlflowException as e:
warnings.warn('Error in saving artifacts to mlflow. The result may not be saved.: {}'.format(e))
if not self.inherit_existing_run:
mlflow.end_run()
示例2: log_numpy
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_artifact [as 別名]
def log_numpy(self, name: str, array: np.ndarray):
"""
Log a numpy ndarray under the logging directory.
Args:
name:
Name of the file. A .npy extension will be appended to the file name if it does not already have one.
array:
Array data to be saved.
"""
path = os.path.join(self.logging_directory, name)
np.save(path, array)
if self.with_mlflow:
import mlflow
mlflow.log_artifact(path + '.npy')
示例3: log_artifact
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_artifact [as 別名]
def log_artifact(self, src_file_path: str):
"""
Make a copy of the file under the logging directory.
Args:
src_file_path:
Path of the file. If path is not a child of the logging directory, the file will be copied.
If ``with_mlflow`` is True, ``mlflow.log_artifact`` will be called (then another copy will be made).
"""
logging_path = os.path.abspath(self.logging_directory)
src_file_path = os.path.abspath(src_file_path)
if os.path.commonpath([logging_path]) != os.path.commonpath([logging_path, src_file_path]):
src_file = os.path.basename(src_file_path)
shutil.copy(src_file, self.logging_directory)
if self.with_mlflow:
import mlflow
mlflow.log_artifact(src_file_path)
示例4: on_train_begin
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_artifact [as 別名]
def on_train_begin(self, logs=None): # pylint: disable=unused-argument
config = self.model.optimizer.get_config()
for attribute in config:
try_mlflow_log(mlflow.log_param, "opt_" + attribute, config[attribute])
sum_list = []
self.model.summary(print_fn=sum_list.append)
summary = '\n'.join(sum_list)
tempdir = tempfile.mkdtemp()
try:
summary_file = os.path.join(tempdir, "model_summary.txt")
with open(summary_file, 'w') as f:
f.write(summary)
try_mlflow_log(mlflow.log_artifact, local_path=summary_file)
finally:
shutil.rmtree(tempdir)
示例5: load_raw_data
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_artifact [as 別名]
def load_raw_data(url):
with mlflow.start_run() as mlrun:
local_dir = tempfile.mkdtemp()
local_filename = os.path.join(local_dir, "ml-20m.zip")
print("Downloading %s to %s" % (url, local_filename))
r = requests.get(url, stream=True)
with open(local_filename, 'wb') as f:
for chunk in r.iter_content(chunk_size=1024):
if chunk: # filter out keep-alive new chunks
f.write(chunk)
extracted_dir = os.path.join(local_dir, 'ml-20m')
print("Extracting %s into %s" % (local_filename, extracted_dir))
with zipfile.ZipFile(local_filename, 'r') as zip_ref:
zip_ref.extractall(local_dir)
ratings_file = os.path.join(extracted_dir, 'ratings.csv')
print("Uploading ratings: %s" % ratings_file)
mlflow.log_artifact(ratings_file, "ratings-csv-dir")
示例6: test_download_artifact_from_absolute_uri_persists_data_to_specified_output_directory
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_artifact [as 別名]
def test_download_artifact_from_absolute_uri_persists_data_to_specified_output_directory(tmpdir):
artifact_file_name = "artifact.txt"
artifact_text = "Sample artifact text"
local_artifact_path = tmpdir.join(artifact_file_name).strpath
with open(local_artifact_path, "w") as out:
out.write(artifact_text)
logged_artifact_subdir = "logged_artifact"
with mlflow.start_run():
mlflow.log_artifact(local_path=local_artifact_path, artifact_path=logged_artifact_subdir)
artifact_uri = mlflow.get_artifact_uri(artifact_path=logged_artifact_subdir)
artifact_output_path = tmpdir.join("artifact_output").strpath
os.makedirs(artifact_output_path)
_download_artifact_from_uri(artifact_uri=artifact_uri, output_path=artifact_output_path)
assert logged_artifact_subdir in os.listdir(artifact_output_path)
assert artifact_file_name in os.listdir(
os.path.join(artifact_output_path, logged_artifact_subdir))
with open(os.path.join(
artifact_output_path, logged_artifact_subdir, artifact_file_name), "r") as f:
assert f.read() == artifact_text
示例7: test_download_artifacts_from_uri
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_artifact [as 別名]
def test_download_artifacts_from_uri():
with mlflow.start_run() as run:
with TempDir() as tmp:
local_path = tmp.path("test")
with open(local_path, "w") as f:
f.write("test")
mlflow.log_artifact(local_path, "test")
command = ["mlflow", "artifacts", "download", "-u"]
# Test with run uri
run_uri = "runs:/{run_id}/test".format(run_id=run.info.run_id)
actual_uri = posixpath.join(run.info.artifact_uri, "test")
for uri in (run_uri, actual_uri):
p = Popen(command + [uri], stdout=PIPE,
stderr=STDOUT)
output = p.stdout.readlines()
downloaded_file_path = output[-1].strip()
downloaded_file = os.listdir(downloaded_file_path)[0]
with open(os.path.join(downloaded_file_path, downloaded_file), "r") as f:
assert f.read() == "test"
示例8: log_artifact
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_artifact [as 別名]
def log_artifact(local_path: str, artifact_path: str = None):
mlflow.log_artifact(local_path, artifact_path)
示例9: save_text_to_mlflow
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_artifact [as 別名]
def save_text_to_mlflow(content, filename):
if not _is_pyarrow_installed():
logger.warning(f"Pyarrow is not installed. {filename} artifact won't be stored on HDFS")
return
logger.info(f"save file {filename} to mlflow")
with tempfile.TemporaryDirectory() as tempdir:
path = os.path.join(tempdir, filename)
with open(path, 'w') as f:
f.write(content)
mlflow.log_artifact(path)
示例10: log_artifact
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_artifact [as 別名]
def log_artifact(local_path, artifact_path=None):
pass
示例11: log_dataframe
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_artifact [as 別名]
def log_dataframe(self, name: str, df: pd.DataFrame, file_format: str = 'feather'):
"""
Log a pandas dataframe under the logging directory.
Args:
name:
Name of the file. A ``.f`` or ``.csv`` extension will be appended to the file name
if it does not already have one.
df:
A dataframe to be saved.
file_format:
A format of output file. ``csv`` and ``feather`` are supported.
"""
path = os.path.join(self.logging_directory, name)
if file_format == 'feather':
if not path.endswith('.f'):
path += '.f'
df.to_feather(path)
elif file_format == 'csv':
if not path.endswith('.csv'):
path += '.csv'
df.to_csv(path, index=False)
else:
raise RuntimeError('format not supported')
if self.with_mlflow:
import mlflow
mlflow.log_artifact(path)
示例12: call_tracking_apis
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_artifact [as 別名]
def call_tracking_apis():
mlflow.log_metric("some_key", 3)
with tempfile.NamedTemporaryFile("w") as temp_file:
temp_file.write("Temporary content.")
mlflow.log_artifact(temp_file.name)
示例13: test_run_with_artifact_path
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_artifact [as 別名]
def test_run_with_artifact_path(tmpdir):
artifact_file = tmpdir.join("model.pkl")
artifact_file.write("Hello world")
with mlflow.start_run() as run:
mlflow.log_artifact(artifact_file)
submitted_run = mlflow.projects.run(
TEST_PROJECT_DIR, entry_point="test_artifact_path",
parameters={"model": "runs:/%s/model.pkl" % run.info.run_id},
use_conda=False, experiment_id=FileStore.DEFAULT_EXPERIMENT_ID)
validate_exit_status(submitted_run.get_status(), RunStatus.FINISHED)
示例14: test_log_artifact_with_dirs
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_artifact [as 別名]
def test_log_artifact_with_dirs(tmpdir):
# Test log artifact with a directory
art_dir = tmpdir.mkdir("parent")
file0 = art_dir.join("file0")
file0.write("something")
file1 = art_dir.join("file1")
file1.write("something")
sub_dir = art_dir.mkdir("child")
with start_run():
artifact_uri = mlflow.get_artifact_uri()
run_artifact_dir = local_file_uri_to_path(artifact_uri)
mlflow.log_artifact(str(art_dir))
base = os.path.basename(str(art_dir))
assert os.listdir(run_artifact_dir) == [base]
assert set(os.listdir(os.path.join(run_artifact_dir, base))) == \
{'child', 'file0', 'file1'}
with open(os.path.join(run_artifact_dir, base, "file0")) as f:
assert f.read() == "something"
# Test log artifact with directory and specified parent folder
art_dir = tmpdir.mkdir("dir")
with start_run():
artifact_uri = mlflow.get_artifact_uri()
run_artifact_dir = local_file_uri_to_path(artifact_uri)
mlflow.log_artifact(str(art_dir), "some_parent")
assert os.listdir(run_artifact_dir) == [os.path.basename("some_parent")]
assert os.listdir(os.path.join(run_artifact_dir, "some_parent")) == \
[os.path.basename(str(art_dir))]
sub_dir = art_dir.mkdir("another_dir")
with start_run():
artifact_uri = mlflow.get_artifact_uri()
run_artifact_dir = local_file_uri_to_path(artifact_uri)
mlflow.log_artifact(str(art_dir), "parent/and_child")
assert os.listdir(os.path.join(run_artifact_dir, "parent", "and_child")) == \
[os.path.basename(str(art_dir))]
assert os.listdir(os.path.join(run_artifact_dir,
"parent", "and_child",
os.path.basename(str(art_dir)))) == \
[os.path.basename(str(sub_dir))]
示例15: test_log_artifact
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import log_artifact [as 別名]
def test_log_artifact():
artifact_src_dir = tempfile.mkdtemp()
# Create artifacts
_, path0 = tempfile.mkstemp(dir=artifact_src_dir)
_, path1 = tempfile.mkstemp(dir=artifact_src_dir)
for i, path in enumerate([path0, path1]):
with open(path, "w") as handle:
handle.write("%s" % str(i))
# Log an artifact, verify it exists in the directory returned by get_artifact_uri
# after the run finishes
artifact_parent_dirs = ["some_parent_dir", None]
for parent_dir in artifact_parent_dirs:
with start_run():
artifact_uri = mlflow.get_artifact_uri()
run_artifact_dir = local_file_uri_to_path(artifact_uri)
mlflow.log_artifact(path0, parent_dir)
expected_dir = os.path.join(run_artifact_dir, parent_dir) \
if parent_dir is not None else run_artifact_dir
assert os.listdir(expected_dir) == [os.path.basename(path0)]
logged_artifact_path = os.path.join(expected_dir, path0)
assert filecmp.cmp(logged_artifact_path, path0, shallow=False)
# Log multiple artifacts, verify they exist in the directory returned by get_artifact_uri
for parent_dir in artifact_parent_dirs:
with start_run():
artifact_uri = mlflow.get_artifact_uri()
run_artifact_dir = local_file_uri_to_path(artifact_uri)
mlflow.log_artifacts(artifact_src_dir, parent_dir)
# Check that the logged artifacts match
expected_artifact_output_dir = os.path.join(run_artifact_dir, parent_dir) \
if parent_dir is not None else run_artifact_dir
dir_comparison = filecmp.dircmp(artifact_src_dir, expected_artifact_output_dir)
assert len(dir_comparison.left_only) == 0
assert len(dir_comparison.right_only) == 0
assert len(dir_comparison.diff_files) == 0
assert len(dir_comparison.funny_files) == 0