當前位置: 首頁>>代碼示例>>Python>>正文


Python mlflow.end_run方法代碼示例

本文整理匯總了Python中mlflow.end_run方法的典型用法代碼示例。如果您正苦於以下問題:Python mlflow.end_run方法的具體用法?Python mlflow.end_run怎麽用?Python mlflow.end_run使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mlflow的用法示例。


在下文中一共展示了mlflow.end_run方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: stop

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import end_run [as 別名]
def stop(self):
        """
        Stop current experiment.
        """
        self._save_dict(self.metrics, 'metrics.json')
        self._save_dict(self.params, 'params.json')

        if not self.is_custom:
            for h in self.logger.handlers:
                h.close()

        if self.with_mlflow:
            import mlflow
            from mlflow.exceptions import MlflowException

            try:
                mlflow.log_artifact(self.log_path)
                mlflow.log_artifact(os.path.join(self.logging_directory, 'metrics.json'))
                mlflow.log_artifact(os.path.join(self.logging_directory, 'params.json'))
            except MlflowException as e:
                warnings.warn('Error in saving artifacts to mlflow. The result may not be saved.: {}'.format(e))
            if not self.inherit_existing_run:
                mlflow.end_run() 
開發者ID:nyanp,項目名稱:nyaggle,代碼行數:25,代碼來源:experiment.py

示例2: test_inherit_outer_scope_run

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import end_run [as 別名]
def test_inherit_outer_scope_run(tmpdir_name):
    mlflow.start_run()
    mlflow.log_param('foo', 1)

    params = {
        'objective': 'binary',
        'max_depth': 8
    }
    X, y = make_classification_df()

    run_experiment(params, X, y, with_mlflow=True, logging_directory=tmpdir_name)

    assert mlflow.active_run() is not None  # still valid

    client = mlflow.tracking.MlflowClient()
    data = client.get_run(mlflow.active_run().info.run_id).data

    assert data.metrics['Overall'] > 0  # recorded

    mlflow.end_run() 
開發者ID:nyanp,項目名稱:nyaggle,代碼行數:22,代碼來源:test_run.py

示例3: test_ignore_errors_in_mlflow_params

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import end_run [as 別名]
def test_ignore_errors_in_mlflow_params(tmpdir_name):
    mlflow.start_run()
    mlflow.log_param('features', 'ABC')
    mlflow.log_metric('Overall', -99)

    params = {
        'objective': 'binary',
        'max_depth': 8
    }
    X, y = make_classification_df()

    result = run_experiment(params, X, y, with_mlflow=True, logging_directory=tmpdir_name, feature_list=[])

    client = mlflow.tracking.MlflowClient()
    data = client.get_run(mlflow.active_run().info.run_id).data

    assert data.metrics['Overall'] == result.metrics[-1]
    assert data.params['features'] == 'ABC'  # params cannot be overwritten

    mlflow.end_run() 
開發者ID:nyanp,項目名稱:nyaggle,代碼行數:22,代碼來源:test_run.py

示例4: test_model_log

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import end_run [as 別名]
def test_model_log(model, data, predicted):
    x, _ = data
    # should_start_run tests whether or not calling log_model() automatically starts a run.
    for should_start_run in [False, True]:
        try:
            if should_start_run:
                mlflow.start_run()
            artifact_path = "keras_model"
            mlflow.keras.log_model(model, artifact_path=artifact_path)
            model_uri = "runs:/{run_id}/{artifact_path}".format(
                run_id=mlflow.active_run().info.run_id,
                artifact_path=artifact_path)

            # Load model
            model_loaded = mlflow.keras.load_model(model_uri=model_uri)
            assert all(model_loaded.predict(x) == predicted)

            # Loading pyfunc model
            pyfunc_loaded = mlflow.pyfunc.load_model(model_uri=model_uri)
            assert all(pyfunc_loaded.predict(x).values == predicted)
        finally:
            mlflow.end_run() 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:24,代碼來源:test_keras_model_export.py

示例5: test_delete_tag

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import end_run [as 別名]
def test_delete_tag():
    """
    Confirm that fluent API delete tags actually works
    :return:
    """
    mlflow.set_tag('a', 'b')
    run = MlflowClient().get_run(mlflow.active_run().info.run_id)
    print(run.info.run_id)
    assert 'a' in run.data.tags
    mlflow.delete_tag('a')
    run = MlflowClient().get_run(mlflow.active_run().info.run_id)
    assert 'a' not in run.data.tags
    with pytest.raises(MlflowException):
        mlflow.delete_tag('a')
    with pytest.raises(MlflowException):
        mlflow.delete_tag('b')
    mlflow.end_run() 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:19,代碼來源:test_fluent.py

示例6: test_model_log

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import end_run [as 別名]
def test_model_log(h2o_iris_model):
    h2o_model = h2o_iris_model.model
    old_uri = mlflow.get_tracking_uri()
    # should_start_run tests whether or not calling log_model() automatically starts a run.
    for should_start_run in [False, True]:
        with TempDir(chdr=True, remove_on_exit=True):
            try:
                artifact_path = "gbm_model"
                mlflow.set_tracking_uri("test")
                if should_start_run:
                    mlflow.start_run()
                mlflow.h2o.log_model(h2o_model=h2o_model, artifact_path=artifact_path)
                model_uri = "runs:/{run_id}/{artifact_path}".format(
                    run_id=mlflow.active_run().info.run_id,
                    artifact_path=artifact_path)

                # Load model
                h2o_model_loaded = mlflow.h2o.load_model(model_uri=model_uri)
                assert all(
                    h2o_model_loaded.predict(h2o_iris_model.inference_data).as_data_frame() ==
                    h2o_model.predict(h2o_iris_model.inference_data).as_data_frame())
            finally:
                mlflow.end_run()
                mlflow.set_tracking_uri(old_uri) 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:26,代碼來源:test_h2o_model_export.py

示例7: test_model_log

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import end_run [as 別名]
def test_model_log(onnx_model, onnx_custom_env):
    # pylint: disable=unused-argument

    import onnx
    import mlflow.onnx
    # should_start_run tests whether or not calling log_model() automatically starts a run.
    for should_start_run in [False, True]:
        try:
            if should_start_run:
                mlflow.start_run()
            artifact_path = "onnx_model"
            mlflow.onnx.log_model(onnx_model=onnx_model,
                                  artifact_path=artifact_path,
                                  conda_env=onnx_custom_env)
            model_uri = "runs:/{run_id}/{artifact_path}".format(
                run_id=mlflow.active_run().info.run_id,
                artifact_path=artifact_path)

            # Load model
            onnx.checker.check_model = mock.Mock()
            mlflow.onnx.load_model(model_uri)
            assert onnx.checker.check_model.called
        finally:
            mlflow.end_run() 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:26,代碼來源:test_onnx_model_export.py

示例8: test_model_log_load_no_active_run

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import end_run [as 別名]
def test_model_log_load_no_active_run(sklearn_knn_model, iris_data, tmpdir):
    sk_model_path = os.path.join(str(tmpdir), "knn.pkl")
    with open(sk_model_path, "wb") as f:
        pickle.dump(sklearn_knn_model, f)

    pyfunc_artifact_path = "pyfunc_model"
    assert mlflow.active_run() is None
    mlflow.pyfunc.log_model(artifact_path=pyfunc_artifact_path,
                            data_path=sk_model_path,
                            loader_module=os.path.basename(__file__)[:-3],
                            code_path=[__file__])
    pyfunc_model_path = _download_artifact_from_uri("runs:/{run_id}/{artifact_path}".format(
        run_id=mlflow.active_run().info.run_id, artifact_path=pyfunc_artifact_path))

    model_config = Model.load(os.path.join(pyfunc_model_path, "MLmodel"))
    assert mlflow.pyfunc.FLAVOR_NAME in model_config.flavors
    assert mlflow.pyfunc.PY_VERSION in model_config.flavors[mlflow.pyfunc.FLAVOR_NAME]
    reloaded_model = mlflow.pyfunc.load_pyfunc(pyfunc_model_path)
    np.testing.assert_array_equal(
        sklearn_knn_model.predict(iris_data[0]), reloaded_model.predict(iris_data[0]))
    mlflow.end_run() 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:23,代碼來源:test_model_export_with_loader_module_and_data_path.py

示例9: test_pyfunc_model_log_load_no_active_run

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import end_run [as 別名]
def test_pyfunc_model_log_load_no_active_run(sklearn_knn_model, main_scoped_model_class, iris_data):
    sklearn_artifact_path = "sk_model_no_run"
    with mlflow.start_run():
        mlflow.sklearn.log_model(sk_model=sklearn_knn_model, artifact_path=sklearn_artifact_path)
        sklearn_model_uri = "runs:/{run_id}/{artifact_path}".format(
            run_id=mlflow.active_run().info.run_id,
            artifact_path=sklearn_artifact_path)

    def test_predict(sk_model, model_input):
        return sk_model.predict(model_input) * 2

    pyfunc_artifact_path = "pyfunc_model"
    assert mlflow.active_run() is None
    mlflow.pyfunc.log_model(artifact_path=pyfunc_artifact_path,
                            artifacts={"sk_model": sklearn_model_uri},
                            python_model=main_scoped_model_class(test_predict))
    pyfunc_model_uri = "runs:/{run_id}/{artifact_path}".format(
        run_id=mlflow.active_run().info.run_id,
        artifact_path=pyfunc_artifact_path)
    loaded_pyfunc_model = mlflow.pyfunc.load_pyfunc(model_uri=pyfunc_model_uri)
    np.testing.assert_array_equal(
        loaded_pyfunc_model.predict(iris_data[0]),
        test_predict(sk_model=sklearn_knn_model, model_input=iris_data[0]))
    mlflow.end_run() 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:26,代碼來源:test_model_export_with_class_and_artifacts.py

示例10: test_log_model_calls_register_model

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import end_run [as 別名]
def test_log_model_calls_register_model(sklearn_knn_model, main_scoped_model_class):
    register_model_patch = mock.patch("mlflow.register_model")
    with register_model_patch:
        sklearn_artifact_path = "sk_model_no_run"
        with mlflow.start_run():
            mlflow.sklearn.log_model(sk_model=sklearn_knn_model,
                                     artifact_path=sklearn_artifact_path)
            sklearn_model_uri = "runs:/{run_id}/{artifact_path}".format(
                run_id=mlflow.active_run().info.run_id,
                artifact_path=sklearn_artifact_path)

        def test_predict(sk_model, model_input):
            return sk_model.predict(model_input) * 2

        pyfunc_artifact_path = "pyfunc_model"
        assert mlflow.active_run() is None
        mlflow.pyfunc.log_model(artifact_path=pyfunc_artifact_path,
                                artifacts={"sk_model": sklearn_model_uri},
                                python_model=main_scoped_model_class(test_predict),
                                registered_model_name="AdsModel1")
        model_uri = "runs:/{run_id}/{artifact_path}".format(run_id=mlflow.active_run().info.run_id,
                                                            artifact_path=pyfunc_artifact_path)
        mlflow.register_model.assert_called_once_with(model_uri, "AdsModel1")
        mlflow.end_run() 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:26,代碼來源:test_model_export_with_class_and_artifacts.py

示例11: test_log_model_no_registered_model_name

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import end_run [as 別名]
def test_log_model_no_registered_model_name(sklearn_knn_model, main_scoped_model_class):
    register_model_patch = mock.patch("mlflow.register_model")
    with register_model_patch:
        sklearn_artifact_path = "sk_model_no_run"
        with mlflow.start_run():
            mlflow.sklearn.log_model(sk_model=sklearn_knn_model,
                                     artifact_path=sklearn_artifact_path)
            sklearn_model_uri = "runs:/{run_id}/{artifact_path}".format(
                run_id=mlflow.active_run().info.run_id,
                artifact_path=sklearn_artifact_path)

        def test_predict(sk_model, model_input):
            return sk_model.predict(model_input) * 2

        pyfunc_artifact_path = "pyfunc_model"
        assert mlflow.active_run() is None
        mlflow.pyfunc.log_model(artifact_path=pyfunc_artifact_path,
                                artifacts={"sk_model": sklearn_model_uri},
                                python_model=main_scoped_model_class(test_predict))
        mlflow.register_model.assert_not_called()
        mlflow.end_run() 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:23,代碼來源:test_model_export_with_class_and_artifacts.py

示例12: end_run

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import end_run [as 別名]
def end_run(cls):
        logger.info(f"**** End of Experiment **** ") 
開發者ID:deepset-ai,項目名稱:FARM,代碼行數:4,代碼來源:utils.py

示例13: end_run

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import end_run [as 別名]
def end_run():
        pass 
開發者ID:Unbabel,項目名稱:OpenKiwi,代碼行數:4,代碼來源:loggers.py

示例14: configure

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import end_run [as 別名]
def configure(
        self,
        run_uuid,
        experiment_name,
        tracking_uri,
        run_name=None,
        always_log_artifacts=False,
        create_run=True,
        create_experiment=True,
        nest_run=True,
    ):
        if mlflow.active_run() and not nest_run:
            logger.info('Ending previous MLFlow run: {}.'.format(self.run_uuid))
            mlflow.end_run()

        self.always_log_artifacts = always_log_artifacts
        self._experiment_name = experiment_name
        self._run_name = run_name

        # MLflow specific
        if tracking_uri:
            mlflow.set_tracking_uri(tracking_uri)

        if run_uuid:
            existing_run = MlflowClient().get_run(run_uuid)
            if not existing_run and not create_run:
                raise FileNotFoundError(
                    'Run ID {} not found under {}'.format(
                        run_uuid, mlflow.get_tracking_uri()
                    )
                )

        experiment_id = self._retrieve_mlflow_experiment_id(
            experiment_name, create=create_experiment
        )
        return mlflow.start_run(
            run_uuid,
            experiment_id=experiment_id,
            run_name=run_name,
            nested=nest_run,
        ) 
開發者ID:Unbabel,項目名稱:OpenKiwi,代碼行數:43,代碼來源:loggers.py

示例15: close

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import end_run [as 別名]
def close(self, mlflow=False):
        for prefix, writer in self.writers.items():
            writer.close()
        if mlflow:
            module_mlflow.end_run() 
開發者ID:wbaek,項目名稱:theconf,代碼行數:7,代碼來源:meter.py


注:本文中的mlflow.end_run方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。