本文整理匯總了Python中mlflow.create_experiment方法的典型用法代碼示例。如果您正苦於以下問題:Python mlflow.create_experiment方法的具體用法?Python mlflow.create_experiment怎麽用?Python mlflow.create_experiment使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mlflow
的用法示例。
在下文中一共展示了mlflow.create_experiment方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _retrieve_mlflow_experiment_id
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import create_experiment [as 別名]
def _retrieve_mlflow_experiment_id(name, create=False):
experiment_id = None
if name:
existing_experiment = MlflowClient().get_experiment_by_name(name)
if existing_experiment:
experiment_id = existing_experiment.experiment_id
else:
if create:
experiment_id = mlflow.create_experiment(name)
else:
raise Exception(
'Experiment "{}" not found in {}'.format(
name, mlflow.get_tracking_uri()
)
)
return experiment_id
示例2: test_model_log
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import create_experiment [as 別名]
def test_model_log():
with TempDir(chdr=True) as tmp:
experiment_id = mlflow.create_experiment("test")
sig = ModelSignature(inputs=Schema([ColSpec("integer", "x"), ColSpec("integer", "y")]),
outputs=Schema([ColSpec(name=None, type="double")]))
input_example = {"x": 1, "y": 2}
with mlflow.start_run(experiment_id=experiment_id) as r:
Model.log("some/path", TestFlavor,
signature=sig,
input_example=input_example)
local_path = _download_artifact_from_uri("runs:/{}/some/path".format(r.info.run_id),
output_path=tmp.path(""))
loaded_model = Model.load(os.path.join(local_path, "MLmodel"))
assert loaded_model.run_id == r.info.run_id
assert loaded_model.artifact_path == "some/path"
assert loaded_model.flavors == {
"flavor1": {"a": 1, "b": 2},
"flavor2": {"x": 1, "y": 2},
}
assert loaded_model.signature == sig
path = os.path.join(local_path, loaded_model.saved_input_example_info["artifact_path"])
x = _dataframe_from_json(path)
assert x.to_dict(orient="records")[0] == input_example
示例3: test_set_experiment
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import create_experiment [as 別名]
def test_set_experiment():
with pytest.raises(TypeError):
mlflow.set_experiment() # pylint: disable=no-value-for-parameter
with pytest.raises(Exception):
mlflow.set_experiment(None)
with pytest.raises(Exception):
mlflow.set_experiment("")
name = "random_exp"
exp_id = mlflow.create_experiment(name)
mlflow.set_experiment(name)
with start_run() as run:
assert run.info.experiment_id == exp_id
another_name = "another_experiment"
mlflow.set_experiment(another_name)
exp_id2 = mlflow.tracking.MlflowClient().get_experiment_by_name(another_name)
with start_run() as another_run:
assert another_run.info.experiment_id == exp_id2.experiment_id
示例4: configure
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import create_experiment [as 別名]
def configure(
self,
run_uuid,
experiment_name,
tracking_uri,
run_name=None,
always_log_artifacts=False,
create_run=True,
create_experiment=True,
nest_run=True,
):
if mlflow.active_run() and not nest_run:
logger.info('Ending previous MLFlow run: {}.'.format(self.run_uuid))
mlflow.end_run()
self.always_log_artifacts = always_log_artifacts
self._experiment_name = experiment_name
self._run_name = run_name
# MLflow specific
if tracking_uri:
mlflow.set_tracking_uri(tracking_uri)
if run_uuid:
existing_run = MlflowClient().get_run(run_uuid)
if not existing_run and not create_run:
raise FileNotFoundError(
'Run ID {} not found under {}'.format(
run_uuid, mlflow.get_tracking_uri()
)
)
experiment_id = self._retrieve_mlflow_experiment_id(
experiment_name, create=create_experiment
)
return mlflow.start_run(
run_uuid,
experiment_id=experiment_id,
run_name=run_name,
nested=nest_run,
)
示例5: test_fetch_create_and_log
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import create_experiment [as 別名]
def test_fetch_create_and_log(tmpdir):
entry_point_name = "entry_point"
parameters = {
"method_name": "string",
}
entry_point = _project_spec.EntryPoint(entry_point_name, parameters, "run_model.sh")
mock_fetched_project = _project_spec.Project(None,
{entry_point_name: entry_point},
None, "my_project")
experiment_id = mlflow.create_experiment("test_fetch_project")
expected_dir = tmpdir
project_uri = "http://someuri/myproject.git"
user_param = {"method_name": "newton"}
with mock.patch("mlflow.projects.utils._fetch_project", return_value=expected_dir):
with mock.patch("mlflow.projects._project_spec.load_project",
return_value=mock_fetched_project):
work_dir = fetch_and_validate_project(
"", "", entry_point_name, user_param)
project = load_project(work_dir)
assert mock_fetched_project == project
assert expected_dir == work_dir
# Create a run
active_run = get_or_create_run(
run_id=None, uri=project_uri, experiment_id=experiment_id, work_dir=work_dir,
version=None, entry_point=entry_point_name, parameters=user_param)
# check tags
run = mlflow.get_run(active_run.info.run_id)
assert MLFLOW_PROJECT_ENTRY_POINT in run.data.tags
assert MLFLOW_SOURCE_NAME in run.data.tags
assert entry_point_name == run.data.tags[MLFLOW_PROJECT_ENTRY_POINT]
assert project_uri == run.data.tags[MLFLOW_SOURCE_NAME]
assert user_param == run.data.params
示例6: test_create_experiment
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import create_experiment [as 別名]
def test_create_experiment():
with pytest.raises(TypeError):
mlflow.create_experiment() # pylint: disable=no-value-for-parameter
with pytest.raises(Exception):
mlflow.create_experiment(None)
with pytest.raises(Exception):
mlflow.create_experiment("")
exp_id = mlflow.create_experiment(
"Some random experiment name %d" % random.randint(1, 1e6))
assert exp_id is not None
示例7: test_create_experiment_with_duplicate_name
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import create_experiment [as 別名]
def test_create_experiment_with_duplicate_name():
name = "popular_name"
exp_id = mlflow.create_experiment(name)
with pytest.raises(MlflowException):
mlflow.create_experiment(name)
tracking.MlflowClient().delete_experiment(exp_id)
with pytest.raises(MlflowException):
mlflow.create_experiment(name)
示例8: test_create_experiments_with_bad_names
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import create_experiment [as 別名]
def test_create_experiments_with_bad_names():
# None for name
with pytest.raises(MlflowException) as e:
mlflow.create_experiment(None)
assert e.message.contains("Invalid experiment name: 'None'")
# empty string name
with pytest.raises(MlflowException) as e:
mlflow.create_experiment("")
assert e.message.contains("Invalid experiment name: ''")
示例9: test_list_experiments
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import create_experiment [as 別名]
def test_list_experiments():
def _assert_exps(ids_to_lifecycle_stage, view_type_arg):
result = set([(exp.experiment_id, exp.lifecycle_stage)
for exp in client.list_experiments(view_type=view_type_arg)])
assert result == set([(exp_id, stage) for exp_id, stage in ids_to_lifecycle_stage.items()])
experiment_id = mlflow.create_experiment("exp_1")
assert experiment_id == '1'
client = tracking.MlflowClient()
_assert_exps({'0': LifecycleStage.ACTIVE, '1': LifecycleStage.ACTIVE}, ViewType.ACTIVE_ONLY)
_assert_exps({'0': LifecycleStage.ACTIVE, '1': LifecycleStage.ACTIVE}, ViewType.ALL)
_assert_exps({}, ViewType.DELETED_ONLY)
client.delete_experiment(experiment_id)
_assert_exps({'0': LifecycleStage.ACTIVE}, ViewType.ACTIVE_ONLY)
_assert_exps({'0': LifecycleStage.ACTIVE, '1': LifecycleStage.DELETED}, ViewType.ALL)
_assert_exps({'1': LifecycleStage.DELETED}, ViewType.DELETED_ONLY)
示例10: test_set_experiment_with_zero_id
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import create_experiment [as 別名]
def test_set_experiment_with_zero_id(reset_mock):
reset_mock(MlflowClient, "get_experiment_by_name",
mock.Mock(return_value=attrdict.AttrDict(
experiment_id=0,
lifecycle_stage=LifecycleStage.ACTIVE)))
reset_mock(MlflowClient, "create_experiment", mock.Mock())
mlflow.set_experiment("my_exp")
MlflowClient.get_experiment_by_name.assert_called_once()
MlflowClient.create_experiment.assert_not_called()
示例11: test_get_artifact_uri_appends_to_uri_path_component_correctly
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import create_experiment [as 別名]
def test_get_artifact_uri_appends_to_uri_path_component_correctly(
artifact_location, expected_uri_format):
client = MlflowClient()
client.create_experiment("get-artifact-uri-test", artifact_location=artifact_location)
mlflow.set_experiment("get-artifact-uri-test")
with mlflow.start_run():
run_id = mlflow.active_run().info.run_id
for artifact_path in ["path/to/artifact", "/artifact/path", "arty.txt"]:
artifact_uri = mlflow.get_artifact_uri(artifact_path)
assert artifact_uri == tracking.artifact_utils.get_artifact_uri(run_id, artifact_path)
assert artifact_uri == expected_uri_format.format(
run_id=run_id, path=artifact_path.lstrip("/"))
示例12: test_search_runs_multiple_experiments
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import create_experiment [as 別名]
def test_search_runs_multiple_experiments():
experiment_ids = [mlflow.create_experiment("exp__{}".format(exp_id)) for exp_id in range(1, 4)]
for eid in experiment_ids:
with mlflow.start_run(experiment_id=eid):
mlflow.log_metric("m0", 1)
mlflow.log_metric("m_{}".format(eid), 2)
assert len(MlflowClient().search_runs(experiment_ids, "metrics.m0 > 0", ViewType.ALL)) == 3
assert len(MlflowClient().search_runs(experiment_ids, "metrics.m_1 > 0", ViewType.ALL)) == 1
assert len(MlflowClient().search_runs(experiment_ids, "metrics.m_2 = 2", ViewType.ALL)) == 1
assert len(MlflowClient().search_runs(experiment_ids, "metrics.m_3 < 4", ViewType.ALL)) == 1
示例13: test_get_experiment_id_with_active_experiment_returns_active_experiment_id
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import create_experiment [as 別名]
def test_get_experiment_id_with_active_experiment_returns_active_experiment_id():
# Create a new experiment and set that as active experiment
with TempDir(chdr=True):
name = "Random experiment %d" % random.randint(1, 1e6)
exp_id = mlflow.create_experiment(name)
assert exp_id is not None
mlflow.set_experiment(name)
assert _get_experiment_id() == exp_id
示例14: test_get_experiment_id_in_databricks_with_active_experiment_returns_active_experiment_id
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import create_experiment [as 別名]
def test_get_experiment_id_in_databricks_with_active_experiment_returns_active_experiment_id():
with TempDir(chdr=True):
exp_name = "random experiment %d" % random.randint(1, 1e6)
exp_id = mlflow.create_experiment(exp_name)
mlflow.set_experiment(exp_name)
notebook_id = str(int(exp_id) + 73)
with mock.patch("mlflow.tracking.fluent.is_in_databricks_notebook") as notebook_detection_mock,\
mock.patch("mlflow.tracking.fluent.get_notebook_id") as notebook_id_mock:
notebook_detection_mock.return_value = True
notebook_id_mock.return_value = notebook_id
assert _get_experiment_id() != notebook_id
assert _get_experiment_id() == exp_id
示例15: test_get_experiment_id_in_databricks_with_experiment_defined_in_env_returns_env_experiment_id
# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import create_experiment [as 別名]
def test_get_experiment_id_in_databricks_with_experiment_defined_in_env_returns_env_experiment_id():
with TempDir(chdr=True):
exp_name = "random experiment %d" % random.randint(1, 1e6)
exp_id = mlflow.create_experiment(exp_name)
notebook_id = str(int(exp_id) + 73)
HelperEnv.set_values(experiment_id=exp_id)
with mock.patch("mlflow.tracking.fluent.is_in_databricks_notebook") as notebook_detection_mock,\
mock.patch("mlflow.tracking.fluent.get_notebook_id") as notebook_id_mock:
notebook_detection_mock.side_effect = lambda *args, **kwargs: True
notebook_id_mock.side_effect = lambda *args, **kwargs: notebook_id
assert _get_experiment_id() != notebook_id
assert _get_experiment_id() == exp_id