當前位置: 首頁>>代碼示例>>Python>>正文


Python mlflow.active_run方法代碼示例

本文整理匯總了Python中mlflow.active_run方法的典型用法代碼示例。如果您正苦於以下問題:Python mlflow.active_run方法的具體用法?Python mlflow.active_run怎麽用?Python mlflow.active_run使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mlflow的用法示例。


在下文中一共展示了mlflow.active_run方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: log_project_artifacts_to_mlflow

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import active_run [as 別名]
def log_project_artifacts_to_mlflow(function: Callable):
    """
    Log the artifact to mlflow

    Parameters
    ----------
    function
        function to wrap
    """

    @wraps(function)
    def wrapped(*args, **kwargs):
        if mlflow.active_run() is None:
            _warn_about_no_run()
            return function(*args, **kwargs)
        artifacts_path = project.get_active_artifacts_directory()
        artifacts_path_realpath = os.path.realpath(artifacts_path)
        mlflow.log_artifacts(artifacts_path_realpath)
        return function(*args, **kwargs)

    return wrapped


# pylint: disable=invalid-name
# this is method, not a constant, and is used inside of the patch 
開發者ID:audi,項目名稱:nucleus7,代碼行數:27,代碼來源:mlflow_utils.py

示例2: start

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import active_run [as 別名]
def start(self):
        """
        Start a new experiment.
        """
        if self.with_mlflow:
            import mlflow

            if mlflow.active_run() is not None:
                active_run = mlflow.active_run()
                self.inherit_existing_run = True
            else:
                active_run = mlflow.start_run(run_name=self.mlflow_run_name, run_id=self.mlflow_run_id)
            mlflow_metadata = {
                'artifact_uri': active_run.info.artifact_uri,
                'experiment_id': active_run.info.experiment_id,
                'run_id': active_run.info.run_id
            }
            self.mlflow_run_id = active_run.info.run_id
            with open(os.path.join(self.logging_directory, 'mlflow.json'), 'w') as f:
                json.dump(mlflow_metadata, f, indent=4) 
開發者ID:nyanp,項目名稱:nyaggle,代碼行數:22,代碼來源:experiment.py

示例3: test_inherit_outer_scope_run

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import active_run [as 別名]
def test_inherit_outer_scope_run(tmpdir_name):
    mlflow.start_run()
    mlflow.log_param('foo', 1)

    params = {
        'objective': 'binary',
        'max_depth': 8
    }
    X, y = make_classification_df()

    run_experiment(params, X, y, with_mlflow=True, logging_directory=tmpdir_name)

    assert mlflow.active_run() is not None  # still valid

    client = mlflow.tracking.MlflowClient()
    data = client.get_run(mlflow.active_run().info.run_id).data

    assert data.metrics['Overall'] > 0  # recorded

    mlflow.end_run() 
開發者ID:nyanp,項目名稱:nyaggle,代碼行數:22,代碼來源:test_run.py

示例4: test_ignore_errors_in_mlflow_params

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import active_run [as 別名]
def test_ignore_errors_in_mlflow_params(tmpdir_name):
    mlflow.start_run()
    mlflow.log_param('features', 'ABC')
    mlflow.log_metric('Overall', -99)

    params = {
        'objective': 'binary',
        'max_depth': 8
    }
    X, y = make_classification_df()

    result = run_experiment(params, X, y, with_mlflow=True, logging_directory=tmpdir_name, feature_list=[])

    client = mlflow.tracking.MlflowClient()
    data = client.get_run(mlflow.active_run().info.run_id).data

    assert data.metrics['Overall'] == result.metrics[-1]
    assert data.params['features'] == 'ABC'  # params cannot be overwritten

    mlflow.end_run() 
開發者ID:nyanp,項目名稱:nyaggle,代碼行數:22,代碼來源:test_run.py

示例5: _log_event

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import active_run [as 別名]
def _log_event(event):
    """
    Extracts metric information from the event protobuf
    """
    if not mlflow.active_run():
        try_mlflow_log(mlflow.start_run)
        global _AUTOLOG_RUN_ID
        _AUTOLOG_RUN_ID = mlflow.active_run().info.run_id
    if event.WhichOneof('what') == 'summary':
        summary = event.summary
        for v in summary.value:
            if v.HasField('simple_value'):
                if (event.step-1) % _LOG_EVERY_N_STEPS == 0:
                    _thread_pool.submit(_add_to_queue, key=v.tag,
                                        value=v.simple_value, step=event.step,
                                        time=int(time.time() * 1000),
                                        run_id=mlflow.active_run().info.run_id) 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:19,代碼來源:tensorflow.py

示例6: test_model_log

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import active_run [as 別名]
def test_model_log(model, data, predicted):
    x, _ = data
    # should_start_run tests whether or not calling log_model() automatically starts a run.
    for should_start_run in [False, True]:
        try:
            if should_start_run:
                mlflow.start_run()
            artifact_path = "keras_model"
            mlflow.keras.log_model(model, artifact_path=artifact_path)
            model_uri = "runs:/{run_id}/{artifact_path}".format(
                run_id=mlflow.active_run().info.run_id,
                artifact_path=artifact_path)

            # Load model
            model_loaded = mlflow.keras.load_model(model_uri=model_uri)
            assert all(model_loaded.predict(x) == predicted)

            # Loading pyfunc model
            pyfunc_loaded = mlflow.pyfunc.load_model(model_uri=model_uri)
            assert all(pyfunc_loaded.predict(x).values == predicted)
        finally:
            mlflow.end_run() 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:24,代碼來源:test_keras_model_export.py

示例7: test_cli_build_image_with_runs_uri_calls_expected_azure_routines

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import active_run [as 別名]
def test_cli_build_image_with_runs_uri_calls_expected_azure_routines(sklearn_model):
    artifact_path = "model"
    with mlflow.start_run():
        mlflow.sklearn.log_model(sk_model=sklearn_model, artifact_path=artifact_path)
        run_id = mlflow.active_run().info.run_id
    model_uri = "runs:/{run_id}/{artifact_path}".format(
        run_id=run_id, artifact_path=artifact_path)

    with AzureMLMocks() as aml_mocks:
        result = CliRunner(env={"LC_ALL": "en_US.UTF-8", "LANG": "en_US.UTF-8"}).invoke(
            mlflow.azureml.cli.commands,
            [
                'build-image',
                '-m', model_uri,
                '-w', 'test_workspace',
                '-i', 'image_name',
                '-n', 'model_name',
            ])
        assert result.exit_code == 0

        assert aml_mocks["register_model"].call_count == 1
        assert aml_mocks["create_image"].call_count == 1
        assert aml_mocks["load_workspace"].call_count == 1 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:25,代碼來源:test_image_creation.py

示例8: test_autolog_ends_auto_created_run

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import active_run [as 別名]
def test_autolog_ends_auto_created_run():
    mlflow.gluon.autolog()

    data = DataLoader(LogsDataset(), batch_size=128, last_batch="discard")

    model = HybridSequential()
    model.add(Dense(64, activation="relu"))
    model.add(Dense(64, activation="relu"))
    model.add(Dense(10))
    model.initialize()
    model.hybridize()

    trainer = Trainer(model.collect_params(), "adam",
                      optimizer_params={"learning_rate": .001, "epsilon": 1e-07})
    est = estimator.Estimator(net=model, loss=SoftmaxCrossEntropyLoss(),
                              metrics=Accuracy(), trainer=trainer)

    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        est.fit(data, epochs=3)

    assert mlflow.active_run() is None 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:24,代碼來源:test_gluon_autolog.py

示例9: test_sparkml_model_log_persists_specified_conda_env_in_mlflow_model_directory

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import active_run [as 別名]
def test_sparkml_model_log_persists_specified_conda_env_in_mlflow_model_directory(
        spark_model_iris, model_path, spark_custom_env):
    artifact_path = "model"
    with mlflow.start_run():
        sparkm.log_model(
            spark_model=spark_model_iris.model,
            artifact_path=artifact_path,
            conda_env=spark_custom_env)
        model_uri = "runs:/{run_id}/{artifact_path}".format(
            run_id=mlflow.active_run().info.run_id,
            artifact_path=artifact_path)

    model_path = _download_artifact_from_uri(artifact_uri=model_uri)
    pyfunc_conf = _get_flavor_configuration(model_path=model_path, flavor_name=pyfunc.FLAVOR_NAME)
    saved_conda_env_path = os.path.join(model_path, pyfunc_conf[pyfunc.ENV])
    assert os.path.exists(saved_conda_env_path)
    assert saved_conda_env_path != spark_custom_env

    with open(spark_custom_env, "r") as f:
        spark_custom_env_parsed = yaml.safe_load(f)
    with open(saved_conda_env_path, "r") as f:
        saved_conda_env_parsed = yaml.safe_load(f)
    assert saved_conda_env_parsed == spark_custom_env_parsed 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:25,代碼來源:test_spark_model_export.py

示例10: test_sparkml_model_log_without_specified_conda_env_uses_default_env_with_expected_dependencies

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import active_run [as 別名]
def test_sparkml_model_log_without_specified_conda_env_uses_default_env_with_expected_dependencies(
        spark_model_iris):
    artifact_path = "model"
    with mlflow.start_run():
        sparkm.log_model(
            spark_model=spark_model_iris.model, artifact_path=artifact_path, conda_env=None)
        model_uri = "runs:/{run_id}/{artifact_path}".format(
            run_id=mlflow.active_run().info.run_id,
            artifact_path=artifact_path)

    model_path = _download_artifact_from_uri(artifact_uri=model_uri)
    pyfunc_conf = _get_flavor_configuration(model_path=model_path, flavor_name=pyfunc.FLAVOR_NAME)
    conda_env_path = os.path.join(model_path, pyfunc_conf[pyfunc.ENV])
    with open(conda_env_path, "r") as f:
        conda_env = yaml.safe_load(f)

    assert conda_env == sparkm.get_default_conda_env() 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:19,代碼來源:test_spark_model_export.py

示例11: test_mleap_model_log

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import active_run [as 別名]
def test_mleap_model_log(spark_model_iris):
    artifact_path = "model"
    register_model_patch = mock.patch("mlflow.register_model")
    with mlflow.start_run(), register_model_patch:
        sparkm.log_model(spark_model=spark_model_iris.model,
                         sample_input=spark_model_iris.spark_df,
                         artifact_path=artifact_path,
                         registered_model_name="Model1")
        model_uri = "runs:/{run_id}/{artifact_path}".format(
            run_id=mlflow.active_run().info.run_id,
            artifact_path=artifact_path)
        mlflow.register_model.assert_called_once_with(model_uri, "Model1")

    model_path = _download_artifact_from_uri(artifact_uri=model_uri)
    config_path = os.path.join(model_path, "MLmodel")
    mlflow_model = Model.load(config_path)
    assert sparkm.FLAVOR_NAME in mlflow_model.flavors
    assert mleap.FLAVOR_NAME in mlflow_model.flavors 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:20,代碼來源:test_spark_model_export.py

示例12: test_log_metrics_uses_millisecond_timestamp_resolution_client

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import active_run [as 別名]
def test_log_metrics_uses_millisecond_timestamp_resolution_client():
    with start_run() as active_run, mock.patch("time.time") as time_mock:
        time_mock.side_effect = lambda: 123
        mlflow_client = tracking.MlflowClient()
        run_id = active_run.info.run_id

        mlflow_client.log_metric(run_id=run_id, key="name_1", value=25)
        mlflow_client.log_metric(run_id=run_id, key="name_2", value=-3)
        mlflow_client.log_metric(run_id=run_id, key="name_1", value=30)
        mlflow_client.log_metric(run_id=run_id, key="name_1", value=40)

    metric_history_name1 = mlflow_client.get_metric_history(run_id, "name_1")
    assert set([(m.value, m.timestamp) for m in metric_history_name1]) == set([
        (25, 123 * 1000),
        (30, 123 * 1000),
        (40, 123 * 1000),
    ])
    metric_history_name2 = mlflow_client.get_metric_history(run_id, "name_2")
    assert set([(m.value, m.timestamp) for m in metric_history_name2]) == set([
        (-3, 123 * 1000),
    ]) 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:23,代碼來源:test_tracking.py

示例13: test_log_batch_validates_entity_names_and_values

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import active_run [as 別名]
def test_log_batch_validates_entity_names_and_values():
    bad_kwargs = {
        "metrics": [
            [Metric(key="../bad/metric/name", value=0.3, timestamp=3, step=0)],
            [Metric(key="ok-name", value="non-numerical-value", timestamp=3, step=0)],
            [Metric(key="ok-name", value=0.3, timestamp="non-numerical-timestamp", step=0)],
        ],
        "params": [[Param(key="../bad/param/name", value="my-val")]],
        "tags": [[Param(key="../bad/tag/name", value="my-val")]],
    }
    with start_run() as active_run:
        for kwarg, bad_values in bad_kwargs.items():
            for bad_kwarg_value in bad_values:
                final_kwargs = {
                    "run_id":  active_run.info.run_id, "metrics": [], "params": [], "tags": [],
                }
                final_kwargs[kwarg] = bad_kwarg_value
                with pytest.raises(MlflowException) as e:
                    tracking.MlflowClient().log_batch(**final_kwargs)
                assert e.value.error_code == ErrorCode.Name(INVALID_PARAMETER_VALUE) 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:22,代碼來源:test_tracking.py

示例14: test_parent_create_run

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import active_run [as 別名]
def test_parent_create_run():
    with mlflow.start_run() as parent_run:
        parent_run_id = parent_run.info.run_id
    os.environ[_RUN_ID_ENV_VAR] = parent_run_id
    with mlflow.start_run() as parent_run:
        assert parent_run.info.run_id == parent_run_id
        with pytest.raises(Exception, match='To start a nested run'):
            mlflow.start_run()
        with mlflow.start_run(nested=True) as child_run:
            assert child_run.info.run_id != parent_run_id
            with mlflow.start_run(nested=True) as grand_child_run:
                pass

    def verify_has_parent_id_tag(child_id, expected_parent_id):
        tags = tracking.MlflowClient().get_run(child_id).data.tags
        assert tags[MLFLOW_PARENT_RUN_ID] == expected_parent_id

    verify_has_parent_id_tag(child_run.info.run_id, parent_run.info.run_id)
    verify_has_parent_id_tag(grand_child_run.info.run_id, child_run.info.run_id)
    assert mlflow.active_run() is None 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:22,代碼來源:test_tracking.py

示例15: test_delete_tag

# 需要導入模塊: import mlflow [as 別名]
# 或者: from mlflow import active_run [as 別名]
def test_delete_tag():
    """
    Confirm that fluent API delete tags actually works
    :return:
    """
    mlflow.set_tag('a', 'b')
    run = MlflowClient().get_run(mlflow.active_run().info.run_id)
    print(run.info.run_id)
    assert 'a' in run.data.tags
    mlflow.delete_tag('a')
    run = MlflowClient().get_run(mlflow.active_run().info.run_id)
    assert 'a' not in run.data.tags
    with pytest.raises(MlflowException):
        mlflow.delete_tag('a')
    with pytest.raises(MlflowException):
        mlflow.delete_tag('b')
    mlflow.end_run() 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:19,代碼來源:test_fluent.py


注:本文中的mlflow.active_run方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。