當前位置: 首頁>>代碼示例>>Python>>正文


Python misc.save_image_grid方法代碼示例

本文整理匯總了Python中misc.save_image_grid方法的典型用法代碼示例。如果您正苦於以下問題:Python misc.save_image_grid方法的具體用法?Python misc.save_image_grid怎麽用?Python misc.save_image_grid使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在misc的用法示例。


在下文中一共展示了misc.save_image_grid方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: generate_fake_images

# 需要導入模塊: import misc [as 別名]
# 或者: from misc import save_image_grid [as 別名]
def generate_fake_images(run_id, snapshot=None, grid_size=[1,1], num_pngs=1, image_shrink=1, png_prefix=None, random_seed=1000, minibatch_size=8):
    network_pkl = misc.locate_network_pkl(run_id, snapshot)
    if png_prefix is None:
        png_prefix = misc.get_id_string_for_network_pkl(network_pkl) + '-'
    random_state = np.random.RandomState(random_seed)

    print('Loading network from "%s"...' % network_pkl)
    G, D, Gs = misc.load_network_pkl(run_id, snapshot)

    result_subdir = misc.create_result_subdir(config.result_dir, config.desc)
    for png_idx in range(num_pngs):
        print('Generating png %d / %d...' % (png_idx, num_pngs))
        latents = misc.random_latents(np.prod(grid_size), Gs, random_state=random_state)
        labels = np.zeros([latents.shape[0], 0], np.float32)
        images = Gs.run(latents, labels, minibatch_size=minibatch_size, num_gpus=config.num_gpus, out_mul=127.5, out_add=127.5, out_shrink=image_shrink, out_dtype=np.uint8)
        misc.save_image_grid(images, os.path.join(result_subdir, '%s%06d.png' % (png_prefix, png_idx)), [0,255], grid_size)
    open(os.path.join(result_subdir, '_done.txt'), 'wt').close()

#----------------------------------------------------------------------------
# Generate MP4 video of random interpolations using a previously trained network.
# To run, uncomment the appropriate line in config.py and launch train.py. 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:23,代碼來源:util_scripts.py

示例2: predict_gan

# 需要導入模塊: import misc [as 別名]
# 或者: from misc import save_image_grid [as 別名]
def predict_gan():
    separate_funcs          = False
    drange_net              = [-1,1]
    drange_viz              = [-1,1]
    image_grid_size         = None
    image_grid_type         = 'default'
    resume_network          = 'pre-trained_weight'
    
    np.random.seed(config.random_seed)

    if resume_network:
        print("Resuming weight from:"+resume_network)
        G = Generator(num_channels=3, resolution=128, label_size=0, **config.G)
        G = load_G_weights(G,resume_network,True)

    print(G.summary())

    # Misc init.

    if image_grid_type == 'default':
        if image_grid_size is None:
            w, h = G.output_shape[1], G.output_shape[2]
            print("w:%d,h:%d"%(w,h))
            image_grid_size = np.clip(int(1920 // w), 3, 16).astype('int'), np.clip(1080 / h, 2, 16).astype('int')
        
        print("image_grid_size:",image_grid_size)
    else:
        raise ValueError('Invalid image_grid_type', image_grid_type)

    result_subdir = misc.create_result_subdir('pre-trained_result', config.run_desc)

    for i in range(1,6):
        snapshot_fake_latents = random_latents(np.prod(image_grid_size), G.input_shape)
        snapshot_fake_images = G.predict_on_batch(snapshot_fake_latents)
        misc.save_image_grid(snapshot_fake_images, os.path.join(result_subdir, 'pre-trained_%03d.png'%i), drange=drange_viz, grid_size=image_grid_size) 
開發者ID:MSC-BUAA,項目名稱:Keras-progressive_growing_of_gans,代碼行數:37,代碼來源:predict.py


注:本文中的misc.save_image_grid方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。