本文整理匯總了Python中misc.create_result_subdir方法的典型用法代碼示例。如果您正苦於以下問題:Python misc.create_result_subdir方法的具體用法?Python misc.create_result_subdir怎麽用?Python misc.create_result_subdir使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類misc
的用法示例。
在下文中一共展示了misc.create_result_subdir方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: generate_fake_images
# 需要導入模塊: import misc [as 別名]
# 或者: from misc import create_result_subdir [as 別名]
def generate_fake_images(run_id, snapshot=None, grid_size=[1,1], num_pngs=1, image_shrink=1, png_prefix=None, random_seed=1000, minibatch_size=8):
network_pkl = misc.locate_network_pkl(run_id, snapshot)
if png_prefix is None:
png_prefix = misc.get_id_string_for_network_pkl(network_pkl) + '-'
random_state = np.random.RandomState(random_seed)
print('Loading network from "%s"...' % network_pkl)
G, D, Gs = misc.load_network_pkl(run_id, snapshot)
result_subdir = misc.create_result_subdir(config.result_dir, config.desc)
for png_idx in range(num_pngs):
print('Generating png %d / %d...' % (png_idx, num_pngs))
latents = misc.random_latents(np.prod(grid_size), Gs, random_state=random_state)
labels = np.zeros([latents.shape[0], 0], np.float32)
images = Gs.run(latents, labels, minibatch_size=minibatch_size, num_gpus=config.num_gpus, out_mul=127.5, out_add=127.5, out_shrink=image_shrink, out_dtype=np.uint8)
misc.save_image_grid(images, os.path.join(result_subdir, '%s%06d.png' % (png_prefix, png_idx)), [0,255], grid_size)
open(os.path.join(result_subdir, '_done.txt'), 'wt').close()
#----------------------------------------------------------------------------
# Generate MP4 video of random interpolations using a previously trained network.
# To run, uncomment the appropriate line in config.py and launch train.py.
示例2: create_result_subdir
# 需要導入模塊: import misc [as 別名]
# 或者: from misc import create_result_subdir [as 別名]
def create_result_subdir(result_dir, run_desc):
# Select run ID and create subdir.
while True:
run_id = 0
for fname in glob.glob(os.path.join(result_dir, '*')):
try:
fbase = os.path.basename(fname)
ford = int(fbase[:fbase.find('-')])
run_id = max(run_id, ford + 1)
except ValueError:
pass
result_subdir = os.path.join(result_dir, '%03d-%s' % (run_id, run_desc))
try:
os.makedirs(result_subdir)
break
except OSError:
if os.path.isdir(result_subdir):
continue
raise
print ("Saving results to", result_subdir)
return result_subdir
示例3: generate_interpolation_video
# 需要導入模塊: import misc [as 別名]
# 或者: from misc import create_result_subdir [as 別名]
def generate_interpolation_video(run_id, snapshot=None, grid_size=[1,1], image_shrink=1, image_zoom=1, duration_sec=60.0, smoothing_sec=1.0, mp4=None, mp4_fps=30, mp4_codec='libx265', mp4_bitrate='16M', random_seed=1000, minibatch_size=8):
network_pkl = misc.locate_network_pkl(run_id, snapshot)
if mp4 is None:
mp4 = misc.get_id_string_for_network_pkl(network_pkl) + '-lerp.mp4'
num_frames = int(np.rint(duration_sec * mp4_fps))
random_state = np.random.RandomState(random_seed)
print('Loading network from "%s"...' % network_pkl)
G, D, Gs = misc.load_network_pkl(run_id, snapshot)
print('Generating latent vectors...')
shape = [num_frames, np.prod(grid_size)] + Gs.input_shape[1:] # [frame, image, channel, component]
all_latents = random_state.randn(*shape).astype(np.float32)
all_latents = scipy.ndimage.gaussian_filter(all_latents, [smoothing_sec * mp4_fps] + [0] * len(Gs.input_shape), mode='wrap')
all_latents /= np.sqrt(np.mean(np.square(all_latents)))
# Frame generation func for moviepy.
def make_frame(t):
frame_idx = int(np.clip(np.round(t * mp4_fps), 0, num_frames - 1))
latents = all_latents[frame_idx]
labels = np.zeros([latents.shape[0], 0], np.float32)
images = Gs.run(latents, labels, minibatch_size=minibatch_size, num_gpus=config.num_gpus, out_mul=127.5, out_add=127.5, out_shrink=image_shrink, out_dtype=np.uint8)
grid = misc.create_image_grid(images, grid_size).transpose(1, 2, 0) # HWC
if image_zoom > 1:
grid = scipy.ndimage.zoom(grid, [image_zoom, image_zoom, 1], order=0)
if grid.shape[2] == 1:
grid = grid.repeat(3, 2) # grayscale => RGB
return grid
# Generate video.
import moviepy.editor # pip install moviepy
result_subdir = misc.create_result_subdir(config.result_dir, config.desc)
moviepy.editor.VideoClip(make_frame, duration=duration_sec).write_videofile(os.path.join(result_subdir, mp4), fps=mp4_fps, codec='libx264', bitrate=mp4_bitrate)
open(os.path.join(result_subdir, '_done.txt'), 'wt').close()
#----------------------------------------------------------------------------
# Generate MP4 video of training progress for a previous training run.
# To run, uncomment the appropriate line in config.py and launch train.py.
示例4: predict_gan
# 需要導入模塊: import misc [as 別名]
# 或者: from misc import create_result_subdir [as 別名]
def predict_gan():
separate_funcs = False
drange_net = [-1,1]
drange_viz = [-1,1]
image_grid_size = None
image_grid_type = 'default'
resume_network = 'pre-trained_weight'
np.random.seed(config.random_seed)
if resume_network:
print("Resuming weight from:"+resume_network)
G = Generator(num_channels=3, resolution=128, label_size=0, **config.G)
G = load_G_weights(G,resume_network,True)
print(G.summary())
# Misc init.
if image_grid_type == 'default':
if image_grid_size is None:
w, h = G.output_shape[1], G.output_shape[2]
print("w:%d,h:%d"%(w,h))
image_grid_size = np.clip(int(1920 // w), 3, 16).astype('int'), np.clip(1080 / h, 2, 16).astype('int')
print("image_grid_size:",image_grid_size)
else:
raise ValueError('Invalid image_grid_type', image_grid_type)
result_subdir = misc.create_result_subdir('pre-trained_result', config.run_desc)
for i in range(1,6):
snapshot_fake_latents = random_latents(np.prod(image_grid_size), G.input_shape)
snapshot_fake_images = G.predict_on_batch(snapshot_fake_latents)
misc.save_image_grid(snapshot_fake_images, os.path.join(result_subdir, 'pre-trained_%03d.png'%i), drange=drange_viz, grid_size=image_grid_size)
示例5: generate_training_video
# 需要導入模塊: import misc [as 別名]
# 或者: from misc import create_result_subdir [as 別名]
def generate_training_video(run_id, duration_sec=20.0, time_warp=1.5, mp4=None, mp4_fps=30, mp4_codec='libx265', mp4_bitrate='16M'):
src_result_subdir = misc.locate_result_subdir(run_id)
if mp4 is None:
mp4 = os.path.basename(src_result_subdir) + '-train.mp4'
# Parse log.
times = []
snaps = [] # [(png, kimg, lod), ...]
with open(os.path.join(src_result_subdir, 'log.txt'), 'rt') as log:
for line in log:
k = re.search(r'kimg ([\d\.]+) ', line)
l = re.search(r'lod ([\d\.]+) ', line)
t = re.search(r'time (\d+d)? *(\d+h)? *(\d+m)? *(\d+s)? ', line)
if k and l and t:
k = float(k.group(1))
l = float(l.group(1))
t = [int(t.group(i)[:-1]) if t.group(i) else 0 for i in range(1, 5)]
t = t[0] * 24*60*60 + t[1] * 60*60 + t[2] * 60 + t[3]
png = os.path.join(src_result_subdir, 'fakes%06d.png' % int(np.floor(k)))
if os.path.isfile(png):
times.append(t)
snaps.append((png, k, l))
assert len(times)
# Frame generation func for moviepy.
png_cache = [None, None] # [png, img]
def make_frame(t):
wallclock = ((t / duration_sec) ** time_warp) * times[-1]
png, kimg, lod = snaps[max(bisect.bisect(times, wallclock) - 1, 0)]
if png_cache[0] == png:
img = png_cache[1]
else:
img = scipy.misc.imread(png)
while img.shape[1] > 1920 or img.shape[0] > 1080:
img = img.astype(np.float32).reshape(img.shape[0]//2, 2, img.shape[1]//2, 2, -1).mean(axis=(1,3))
png_cache[:] = [png, img]
img = misc.draw_text_label(img, 'lod %.2f' % lod, 16, img.shape[0]-4, alignx=0.0, aligny=1.0)
img = misc.draw_text_label(img, misc.format_time(int(np.rint(wallclock))), img.shape[1]//2, img.shape[0]-4, alignx=0.5, aligny=1.0)
img = misc.draw_text_label(img, '%.0f kimg' % kimg, img.shape[1]-16, img.shape[0]-4, alignx=1.0, aligny=1.0)
return img
# Generate video.
import moviepy.editor # pip install moviepy
result_subdir = misc.create_result_subdir(config.result_dir, config.desc)
moviepy.editor.VideoClip(make_frame, duration=duration_sec).write_videofile(os.path.join(result_subdir, mp4), fps=mp4_fps, codec='libx264', bitrate=mp4_bitrate)
open(os.path.join(result_subdir, '_done.txt'), 'wt').close()
#----------------------------------------------------------------------------
# Evaluate one or more metrics for a previous training run.
# To run, uncomment one of the appropriate lines in config.py and launch train.py.