當前位置: 首頁>>代碼示例>>Python>>正文


Python memory_profiler.memory_usage方法代碼示例

本文整理匯總了Python中memory_profiler.memory_usage方法的典型用法代碼示例。如果您正苦於以下問題:Python memory_profiler.memory_usage方法的具體用法?Python memory_profiler.memory_usage怎麽用?Python memory_profiler.memory_usage使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在memory_profiler的用法示例。


在下文中一共展示了memory_profiler.memory_usage方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: during_execution_memory_sampler

# 需要導入模塊: import memory_profiler [as 別名]
# 或者: from memory_profiler import memory_usage [as 別名]
def during_execution_memory_sampler():
    """Thread to sample memory usage"""
    import time
    import memory_profiler
    global keep_watching, peak_memory_usage
    peak_memory_usage = -1
    keep_watching = True

    n = 0
    WAIT_BETWEEN_SAMPLES_SECS = 0.001
    MAX_ITERATIONS = 60.0 / WAIT_BETWEEN_SAMPLES_SECS
    while True:
        mem_usage = memory_profiler.memory_usage()[0]
        peak_memory_usage = max(mem_usage, peak_memory_usage)
        time.sleep(WAIT_BETWEEN_SAMPLES_SECS)
        if not keep_watching or n > MAX_ITERATIONS:
            # exit if we've been told our command has finished or if it has run
            # for more than a sane amount of time (e.g. maybe something crashed
            # and we don't want this to carry on running)
            if n > MAX_ITERATIONS:
                print("{} SOMETHING WEIRD HAPPENED AND THIS RAN FOR TOO LONG, THIS THREAD IS KILLING ITSELF".format(__file__))
            break
        n += 1 
開發者ID:ianozsvald,項目名稱:ipython_memory_usage,代碼行數:25,代碼來源:ipython_memory_usage.py

示例2: during_execution_memory_sampler

# 需要導入模塊: import memory_profiler [as 別名]
# 或者: from memory_profiler import memory_usage [as 別名]
def during_execution_memory_sampler():
    import time
    import memory_profiler
    global keep_watching, peak_memory_usage
    peak_memory_usage = -1
    keep_watching = True

    n = 0
    WAIT_BETWEEN_SAMPLES_SECS = 0.001
    MAX_ITERATIONS = 60.0 / WAIT_BETWEEN_SAMPLES_SECS
    while True:
        mem_usage = memory_profiler.memory_usage()[0]
        peak_memory_usage = max(mem_usage, peak_memory_usage)
        time.sleep(WAIT_BETWEEN_SAMPLES_SECS)
        if not keep_watching or n > MAX_ITERATIONS:
            # exit if we've been told our command has finished or if it has run
            # for more than a sane amount of time (e.g. maybe something crashed
            # and we don't want this to carry on running)
            if n > MAX_ITERATIONS:
                print("{} SOMETHING WEIRD HAPPENED AND THIS RAN FOR TOO LONG, THIS THREAD IS KILLING ITSELF".format(__file__))
            break
        n += 1 
開發者ID:ianozsvald,項目名稱:ipython_memory_usage,代碼行數:24,代碼來源:ipython_memory_usage_perf.py

示例3: resource_used

# 需要導入模塊: import memory_profiler [as 別名]
# 或者: from memory_profiler import memory_usage [as 別名]
def resource_used(func):
    """ Decorator that return a function that prints its usage
    """

    @functools.wraps(func)
    def wrapped_func(*args, **kwargs):
        t0 = time()
        mem, out = memory_profiler.memory_usage((func, args, kwargs),
                                                max_usage=True,
                                                retval=True)
        print("Run time: %.1is    Memory used: %iMb"
              % (time() - t0, mem))
        return out

    return wrapped_func


################################################################################
# Data Importing and preprocessing
# --------------------------------
#
# We first download the dataset: 
開發者ID:dirty-cat,項目名稱:dirty_cat,代碼行數:24,代碼來源:04_dimension_reduction_and_performance.py

示例4: _get_memory_base

# 需要導入模塊: import memory_profiler [as 別名]
# 或者: from memory_profiler import memory_usage [as 別名]
def _get_memory_base(gallery_conf):
    """Get the base amount of memory used by running a Python process."""
    if not gallery_conf['plot_gallery']:
        return 0.
    # There might be a cleaner way to do this at some point
    from memory_profiler import memory_usage
    if sys.platform in ('win32', 'darwin'):
        sleep, timeout = (1, 2)
    else:
        sleep, timeout = (0.5, 1)
    proc = subprocess.Popen(
        [sys.executable, '-c',
            'import time, sys; time.sleep(%s); sys.exit(0)' % sleep],
        close_fds=True)
    memories = memory_usage(proc, interval=1e-3, timeout=timeout)
    kwargs = dict(timeout=timeout) if sys.version_info >= (3, 5) else {}
    proc.communicate(**kwargs)
    # On OSX sometimes the last entry can be None
    memories = [mem for mem in memories if mem is not None] + [0.]
    memory_base = max(memories)
    return memory_base 
開發者ID:sphinx-gallery,項目名稱:sphinx-gallery,代碼行數:23,代碼來源:gen_rst.py

示例5: test_memory_usage_ok

# 需要導入模塊: import memory_profiler [as 別名]
# 或者: from memory_profiler import memory_usage [as 別名]
def test_memory_usage_ok():
    import memory_profiler
    dataset = DataSet(width=80, height=80,
                      rng=np.random.RandomState(42),
                      max_steps=100000, phi_length=4)
    last = time.time()

    for i in xrange(1000000000):
        if (i % 100000) == 0:
            print i
        dataset.add_sample(np.random.random((80, 80)), 1, 1, False)
        if i > 200000:
            imgs, actions, rewards, terminals = \
                                        dataset.random_batch(32)
        if (i % 10007) == 0:
            print time.time() - last
            mem_usage = memory_profiler.memory_usage(-1)
            print len(dataset), mem_usage
        last = time.time() 
開發者ID:ShibiHe,項目名稱:Model-Free-Episodic-Control,代碼行數:21,代碼來源:ale_data_set.py

示例6: checkpoint_memory

# 需要導入模塊: import memory_profiler [as 別名]
# 或者: from memory_profiler import memory_usage [as 別名]
def checkpoint_memory():
    '''This test is meant to be run manually, since it depends on
    memory_profiler and its behavior may vary.'''
    try:
        from memory_profiler import memory_usage
    except ImportError:
        return

    def f(a):
        for _ in range(10):
            a = np.sin(a**2 + 1)
        return a
    checkpointed_f = checkpoint(f)

    def testfun(f, x):
        for _ in range(5):
            x = f(x)
        return np.sum(x)
    gradfun = grad(testfun, 1)

    A = npr.RandomState(0).randn(100000)
    max_usage              = max(memory_usage((gradfun, (f,              A))))
    max_checkpointed_usage = max(memory_usage((gradfun, (checkpointed_f, A))))

    assert max_checkpointed_usage < max_usage / 2. 
開發者ID:HIPS,項目名稱:autograd,代碼行數:27,代碼來源:test_wrappers.py

示例7: __init__

# 需要導入模塊: import memory_profiler [as 別名]
# 或者: from memory_profiler import memory_usage [as 別名]
def __init__(self):
        # keep a global accounting for the last known memory usage
        # which is the reference point for the memory delta calculation
        self.previous_call_memory_usage = memory_profiler.memory_usage()[0]
        self.t1 = time.time() # will be set to current time later
        self.keep_watching = True
        self.peak_memory_usage = -1
        self.peaked_memory_usage = -1
        self.memory_delta = 0
        self.time_delta = 0
        self.watching_memory = True
        self.ip = get_ipython()
        self.input_cells = self.ip.user_ns['In']
        self._measurements = namedtuple(
            'Measurements',
            ['memory_delta', 'time_delta', 'memory_peak', 'memory_usage'],
            ) 
開發者ID:FrancescAlted,項目名稱:ipython_memwatcher,代碼行數:19,代碼來源:memwatcher.py

示例8: watch_memory

# 需要導入模塊: import memory_profiler [as 別名]
# 或者: from memory_profiler import memory_usage [as 別名]
def watch_memory(self):
        if not self.watching_memory:
            return
        # calculate time delta using global t1 (from the pre-run
        # event) and current time
        self.time_delta = time.time() - self.t1
        new_memory_usage = memory_profiler.memory_usage()[0]
        self.memory_delta = new_memory_usage - self.previous_call_memory_usage
        self.keep_watching = False
        self.peaked_memory_usage = max(0, self.peak_memory_usage - new_memory_usage)
        num_commands = len(self.input_cells) - 1
        cmd = "In [{}]".format(num_commands)
        # convert the results into a pretty string
        output_template = ("{cmd} used {memory_delta:0.3f} MiB RAM in "
                           "{time_delta:0.3f}s, peaked {peaked_memory_usage:0.3f} "
                           "MiB above current, total RAM usage "
                           "{memory_usage:0.3f} MiB")
        output = output_template.format(
            time_delta=self.time_delta,
            cmd=cmd,
            memory_delta=self.memory_delta,
            peaked_memory_usage=self.peaked_memory_usage,
            memory_usage=new_memory_usage)
        print(str(output))
        self.previous_call_memory_usage = new_memory_usage 
開發者ID:FrancescAlted,項目名稱:ipython_memwatcher,代碼行數:27,代碼來源:memwatcher.py

示例9: during_execution_memory_sampler

# 需要導入模塊: import memory_profiler [as 別名]
# 或者: from memory_profiler import memory_usage [as 別名]
def during_execution_memory_sampler(self):
        import time
        import memory_profiler
        self.peak_memory_usage = -1
        self.keep_watching = True

        n = 0
        WAIT_BETWEEN_SAMPLES_SECS = 0.001
        MAX_ITERATIONS = 60.0 / WAIT_BETWEEN_SAMPLES_SECS
        while True:
            mem_usage = memory_profiler.memory_usage()[0]
            self.peak_memory_usage = max(mem_usage, self.peak_memory_usage)
            time.sleep(WAIT_BETWEEN_SAMPLES_SECS)
            if not self.keep_watching or n > MAX_ITERATIONS:
                # exit if we've been told our command has finished or
                # if it has run for more than a sane amount of time
                # (e.g. maybe something crashed and we don't want this
                # to carry on running)
                if n > MAX_ITERATIONS:
                    print("{} SOMETHING WEIRD HAPPENED AND THIS RAN FOR TOO LONG, THIS THREAD IS KILLING ITSELF".format(__file__))
                break
            n += 1 
開發者ID:FrancescAlted,項目名稱:ipython_memwatcher,代碼行數:24,代碼來源:memwatcher.py

示例10: watch_memory

# 需要導入模塊: import memory_profiler [as 別名]
# 或者: from memory_profiler import memory_usage [as 別名]
def watch_memory():
    # bring in the global memory usage value from the previous iteration
    global previous_call_memory_usage, peak_memory_usage, keep_watching, \
           watching_memory, input_cells
    new_memory_usage = memory_profiler.memory_usage()[0]
    memory_delta = new_memory_usage - previous_call_memory_usage
    keep_watching = False
    # calculate time delta using global t1 (from the pre-run event) and current
    # time
    time_delta_secs = time.time() - t1
    num_commands = len(input_cells) - 1
    cmd = "In [{}]".format(num_commands)
    # convert the results into a pretty string
    output_template = ("{cmd} used {memory_delta:0.4f} MiB RAM in "
                       "{time_delta:0.2f}s, total RAM usage "
                       "{memory_usage:0.2f} MiB")
    output = output_template.format(time_delta=time_delta_secs,
                                    cmd=cmd,
                                    memory_delta=memory_delta,
                                    memory_usage=new_memory_usage)
    if watching_memory:
        print(str(output))
    previous_call_memory_usage = new_memory_usage 
開發者ID:h2oai,項目名稱:h2o4gpu,代碼行數:25,代碼來源:notebook_memory_management.py

示例11: watch_memory

# 需要導入模塊: import memory_profiler [as 別名]
# 或者: from memory_profiler import memory_usage [as 別名]
def watch_memory():
    """Prints the memory usage if watching the memory"""
    # bring in the global memory usage value from the previous iteration
    global previous_call_memory_usage, peak_memory_usage, keep_watching, \
           watching_memory, input_cells
    new_memory_usage = memory_profiler.memory_usage()[0]
    memory_delta = new_memory_usage - previous_call_memory_usage
    keep_watching = False
    peaked_memory_usage = max(0, peak_memory_usage - new_memory_usage)
    # calculate time delta using global t1 (from the pre-run event) and current
    # time
    time_delta_secs = time.time() - t1
    num_commands = len(input_cells) - 1
    cmd = "In [{}]".format(num_commands)
    # convert the results into a pretty string
    output_template = ("{cmd} used {memory_delta:0.4f} MiB RAM in "
                       "{time_delta:0.2f}s, peaked {peaked_memory_usage:0.2f} "
                       "MiB above current, total RAM usage "
                       "{memory_usage:0.2f} MiB")
    output = output_template.format(time_delta=time_delta_secs,
                                    cmd=cmd,
                                    memory_delta=memory_delta,
                                    peaked_memory_usage=peaked_memory_usage,
                                    memory_usage=new_memory_usage)
    if watching_memory:
        print(str(output))
    previous_call_memory_usage = new_memory_usage 
開發者ID:ianozsvald,項目名稱:ipython_memory_usage,代碼行數:29,代碼來源:ipython_memory_usage.py

示例12: encrypt_file

# 需要導入模塊: import memory_profiler [as 別名]
# 或者: from memory_profiler import memory_usage [as 別名]
def encrypt_file(data: BytesIO, fingerprint: str) -> str:
    LOG.d("encrypt for %s", fingerprint)
    mem_usage = memory_usage(-1, interval=1, timeout=1)[0]
    LOG.d("mem_usage %s", mem_usage)

    # todo
    if mem_usage > 300:
        LOG.error("Force exit")
        hard_exit()

    r = gpg.encrypt_file(data, fingerprint, always_trust=True)
    if not r.ok:
        # maybe the fingerprint is not loaded on this host, try to load it
        mailbox = Mailbox.get_by(pgp_finger_print=fingerprint)
        if mailbox:
            LOG.d("(re-)load public key for %s", mailbox)
            load_public_key(mailbox.pgp_public_key)

            LOG.d("retry to encrypt")
            data.seek(0)
            r = gpg.encrypt_file(data, fingerprint, always_trust=True)

        if not r.ok:
            raise PGPException(f"Cannot encrypt, status: {r.status}")

    return str(r) 
開發者ID:simple-login,項目名稱:app,代碼行數:28,代碼來源:pgp_utils.py

示例13: cur_python_mem

# 需要導入模塊: import memory_profiler [as 別名]
# 或者: from memory_profiler import memory_usage [as 別名]
def cur_python_mem():
	mem_usage = memory_usage(-1, interval=0.2, timeout=1)
	return mem_usage 
開發者ID:dragondjf,項目名稱:QMusic,代碼行數:5,代碼來源:mem_profile.py

示例14: watch_memory

# 需要導入模塊: import memory_profiler [as 別名]
# 或者: from memory_profiler import memory_usage [as 別名]
def watch_memory():
    # bring in the global memory usage value from the previous iteration
    global previous_call_memory_usage, keep_watching, watching_memory, input_cells
    new_memory_usage = memory_profiler.memory_usage()[0]
    memory_delta = new_memory_usage - previous_call_memory_usage
    keep_watching = False
    total_memory = psutil.virtual_memory()[0] / 1024 / 1024  # in Mb
    # calculate time delta using global t1 (from the pre-run event) and current time
    time_delta_secs = time.time() - t1
    num_commands = len(input_cells) - 1
    cmd = "In [{}]".format(num_commands)
    # convert the results into a pretty string
    output_template = (
        "{cmd} used {memory_delta:0.4f} Mb RAM in "
        "{time_delta:0.2f}s, total RAM usage "
        "{memory_usage:0.2f} Mb, total RAM "
        "memory {total_memory:0.2f} Mb"
    )
    output = output_template.format(
        time_delta=time_delta_secs,
        cmd=cmd,
        memory_delta=memory_delta,
        memory_usage=new_memory_usage,
        total_memory=total_memory,
    )
    if watching_memory:
        print(str(output))
    previous_call_memory_usage = new_memory_usage 
開發者ID:Azure-Samples,項目名稱:azure-python-labs,代碼行數:30,代碼來源:notebook_memory_management.py

示例15: test_visual_benchmark

# 需要導入模塊: import memory_profiler [as 別名]
# 或者: from memory_profiler import memory_usage [as 別名]
def test_visual_benchmark(qtbot, vertex_shader_nohook, fragment_shader):
    try:
        from memory_profiler import memory_usage
    except ImportError:  # pragma: no cover
        logger.warning("Skip test depending on unavailable memory_profiler module.")
        return

    class TestCanvas(QOpenGLWindow):
        def paintGL(self):
            gloo.clear()
            program.draw('points')

    program = gloo.Program(vertex_shader_nohook, fragment_shader)

    canvas = TestCanvas()
    canvas.show()
    qtbot.waitForWindowShown(canvas)

    def f():
        for _ in range(100):
            program['a_position'] = (-1 + 2 * np.random.rand(100_000, 2)).astype(np.float32)
            canvas.update()
            qtbot.wait(1)

    mem = memory_usage(f)
    usage = max(mem) - min(mem)
    print(usage)

    # NOTE: this test is failing currently because of a memory leak in the the gloo module.
    # Recreating a buffer at every cluster selection causes a memory leak, once should ideally
    # use a single large buffer and reuse that, even if the buffer's content is actually smaller.
    # assert usage < 10

    canvas.close() 
開發者ID:cortex-lab,項目名稱:phy,代碼行數:36,代碼來源:test_base.py


注:本文中的memory_profiler.memory_usage方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。